.
.

84766) N N82-29043
SOFTH#ARE ENGINEERING CDATA IN THE SOFTWHARE ’
ENGIREERING LABORATORY ({5EL) ({HASA) 73 p
CSCL 09B Unclas

.
i
.

o
.




SOFTWARE ENGINEERING LABORATORY SERIES SEL-81-014

AUTOMATED COLLECTION OF
SOFTWARE ENGINEERING DATA IN
THE SOFTWARE ENGINEERING
"LABORATORY (SEL)

SEPTEMBER 1981

NNS

National Aeronautics and
Space Admunistration

Goddard Space Flight Center
Greenbelt. Maryland 20771



FOREWORD

The Software Engineering Laboratory (SEL) is an organization
sponsored by the National Aeronautics and Space Administra-~
tion, Goddard Space Flight Center (NASA/GSFC) and created
for the purpose of investiéating the effectiveness of
software engineering technologies when applied to the
development of applications software. The SEL was created
in 1977 and has three primary organizational members:

NASA/GSFC (Systems Development and Analysis Branch)
The University of Maryland (Computer Sciences Department)
Computer Sciences Corporation (Flight Systems Operation)

The goals of the SEL are (1) to understand the software de-
velopment process in the GSFC environment; (2) to measure
the effect of various methodologies, tools, and models on
this process; and (3) to identify and then to apply success-
ful development practices. The activities, findings, and
recommendations of the SEL are recorded in the Software En-
gineering Laboratory Series, a continuing series of reports
that includes this document. A version of this document was
also issued as Computer Sciences Corporation document
CsSC/T™M~81/6222.

The primary contributor to this document is
Arthur Green (Computer Sciences Corporation)
Other contributors include

William Decker (Computer Sciences Corporation)
Frank McGarry (Goddard Space Flight Center)

Single copies of this document can be obtained by writing to

Frank E. McGarry

Code 582.1

NASA/GSFC

Greenbelt, Marvland 20771

ii
ORIGINAL PAGE I:
OF POOR QUALITY



ABSTRACT

This document examines the collection of software engineer-
ing data in the Goddard Space Flight Center (GSFC) Software
Engineering Laboratory (SEL). The current manual collection

of data via software engineering forms is evaluated with re-

gard to what can and cannot be automated. Top level func-=
tional requirements for an automated system for the collection

of software development statistics are presented.

111 QRIGINAL PAGE IS
OF POOR QUALITY




TABLE OF CONTENTS

Section 1 - Introduction . . . . . . . . .

Section 2 = Overview of the SEL Data Collection

Process e s e e e s e s e e s

SEL Forms e e e s e . e e e e e
SEL Data Collection and the Software
,Development Process . . . . . . .

Special Considerations in Automating
Data Collection . . . . . . « .+ .

Section 3 - SEL Data Sources for Automatic

wwww
L] . . *
=W

.

WWWwwwwww
.
HHMFEWYWoOYU,

NHEO

Extraction . . . +v « « o o o

Accounting Information . . . . . . .

Keyboard Monitor . . . . . « . . . .
VAX Object Module Analyzer . . . . .
Requirements Analysis Tools (MEDL-R,

PSL/PSA) v v v + v o o o o o o & =
Programmer Workbench . . . . . . . .
Text Editors . . . . « « + =« . . .
Program Design Languages (PDLS) . .

Utilities . . . ¢« o ¢« ¢ ¢ o o o « &
Linker/Task Builder Statistics . . .
Compiler Statistics . . . . . « . .
Directory Information . . . . .
FORTRAN Static Source Code Analyzer

Program (SAP) e e e e e e s e

Section 4 - SEL Data That Cannot Be Extracted

4.1
4.2
4.3

Automatically . . . . . . .

Subjective Data . . .« . « « . . . .
Manual Processes .« . i =+« « + o o o
Valid Other Activities . . . . . . .

Section 5 - Functional Requirements . . .

5.1

Operational Considerations . . . . .

5.1.1 Time and Space Utilization .

5.1.2 Event Monitoring . . . . . .

Data Collection in the SEL Hardware

Environment . . . « « + & o o o

SUMIMAYY + &« o o o o o o « o 2 o = =
iv

ORIGINAL PAGE 18
OF POOR QUALITY

www w
I [ 1
N W L

(I
OO0 0000y

= W Lluwwwwwww
i ' i i
= —
(Vo]

Bk b
i
(S0 I o

T
’._l

vitor U
1
N

(82 0z ]
|
wN



3 TABLE OF CONTENTS (Cont'd)
4

Section 6 - Conclusions and Recommendations . . . . . 6-1

Appendix A - Sample SEL Software Engineering Forms

References

,1 ,
Sl

i

St

Vv ORIGINAL PAGE Iy
i OF POOR QUALITY



LIST OF ILLUSTRATIONS

Figure
2-1 Typical SEL Software Development Life Cycle.
3-1 VAX Accounting File and Termination Message
Contents . . ¢ . v 4w 4 o 4 4 o s o o o 2
3-2 VAX Accounting File Information . . . .
3-3 Output From the VAX Object Module Analyzer
(ANALYZE) - . e s 5 s e e e e s e s
3-4 Output From the DIFF Utlllty e e e s e e e e
3-5 Output From the DISKUSE Utility . . . . . .
3-6 Sample Link Statistics . . . . . . . ¢ . . .
3-7 Sample Compiler Data . . . . « ¢ ¢ &« « + o .
3-8 Sample Full Directory Listing . . . . . . .
3-9 System File Analyzer Output . . . . . . . .
3-10 Statistics From the FORTRAN Static Source
Code Analyzer Program (SAP) . . . . « « .
3-11 Sample Output From the FORTRAN Static Source
Code Analyzer Program (SAP) . . . . . . .
LIST OF TABLES
Table
3-1 Sources of Online Software Engineering Data.
4-1 Data From the SEL Forms That Cannot Be
Automatically Extracted . . . . . . . . .

CRIGINAL PAGE ic
OF POOR QUALITY



-
C

SECTION 1 - INTRODUCTION

Software engineering (SE) is a discipline that seeks to pro-
vide a more scientific approach to computer software design
and development. In order to learn how to develop software
more scientifically in the Goddard Space Flight Center (GSFC)
Mission Support Computing and Analysis Division (Code 580)
environment, the Software Engineering Laboratory (SEL) was
created to measure and evaluate the effects of various
methodologies in current use (Reference 1).

The stated goals of the SEL can be broken down into the fol-

lowing three major categories:
1. Monitor current project progress

2. Collect SE data to determine how software is being

developed

3. Evaluate the effects of various methodologies across
several GSFC Code 580 projects, with regard to their
impact on software development

One of these major functions is the collection and analysis
of SE data. During the last 5 years, the SEL has attempted
to collect SE data pertinent to the design and development
of several major software systems. The goal of this study
has been to determine areas where time and effort has been
unproductive and where improved methodologies might be em-

ployed to produce a better product.

The data collection instrument consists primarily of a set

of six software engineering forms which are filled out on

a regular basis by programmers and systems designers involved
in a given development project. The forms are supplemented
by computer accounting information, code analyzers, personal
interviews, and subjective management data.

1-1
ORIGINAL PAGE IS
OF POOR QUALITY



i To date, the data collection and analysis have proven to be
l costly, time consuming, and subject to inaccuracieé. This
is primarily due to the manual collection and preparation
of the data for entry into a data base management system
(DBAM) which performs report generation but very little an-
alysis. '

The manual data collection process is a slow and tedious

_é process in which many people (including managers, program-
mers, analysts, and support personnel) must complete forms,

yyyy validate the data, and enter SE data into the data base.

There is no feedback mechanism for analyzing the data and

folding the results back into the projects. Also, human

factors, such as programmer motivation (or lack of it), play

an important part in the accuracy of the data collected.

Because of these drawbacks to manual data collection, auto-

"matic extraction of SE data in the SEL would be very desir-

able. Even though validation of the collected data would

be required, the time currently spent filling out the forms
and entering the data would be saved; since the data would

be collected and stored on the same machine that the develop-

ment effort is using. There would be virtually no influence

b i | S

from human factors on the data collected in an automatic

} mode.

The purpose of this document is to analyze this possibility.
wz Section 2 gives an overview of the current SEL data collec-
tion process. Section 3 describes the SEL data that could
be automatically collected, and Section 4 discusses the types
of SEL data that could not be extracted automatically. Some
top-level functional requirements for an online automated

data collection system are given in Section 5, and Section 6

) presents the conclusions and recommendations resulting from
l this study.



,,,,,,

I
%
|

i

SECTION 2 - OVERVIEW OF THE SEL DATA COLLECTION PROCESS

This section gives an overview of the data collection proc-
ess followed in the SEL. Included in the overview is a brief
description of the software engineering forms used and the
relationship of data collection to the software development
process. Also given is a brief discussion of some special

consiflerations in automating the SEL data collection.
2.1 SEL FORMS

The data collection system which has evolved in the SEL con-~
sists of a set of six reporting forms which are completed
at various stages of software development. These forms are

shown in Appendix A and are summarized below.

® General Project Summary--This form defines the scope

of the software development problem.

e Component Summary--This form describes the structure
of each component (e.g., module or routine) of the

software system under study.

® Resource Summary--This form provides manpower charges

and computer usage statistics.

° Component Status Report--~This form details the activ-
itites of the programmer/designer on each component

of the software system.

o Run Analysis~-This form provides the results of a

given program execution.

e Change Report--This form gives the reason for and a
description of each change to the software system.

As mentioned in Section 1, these forms are filled out on a
regular basis by the programmers and systems designers in-
volved in a given development project. (See Section 2.1 of
Reference 2 for details of the SEL data collection and the

software engineering forms.)

2-1



4

j %
€ il

2.2 SEL DATA COLLECTION AND THE SOFTWARE DEVELOPMEN
PROCESS ’

The SEL data collection procedure attempts to measure the
total resources of the software development process as it
exists in the SEL environment. (See Figure 2-1 for an il-
lustration of a typical SEL software development life cycle.)
In order for the data collection procedure to be effective,
it must monitor development activities throughout the entire
software life cycle and not just during design and implemen-
tation.

The software development process is divided into a number

of serial and distinct functions linked by informal, loosely
coupled communication channels between the requirements,
design, coding, testing, integration, operation, and main-
tenance phases. Most of the focus to date has been on mon-
itoring the requirements, coding, and testing phases, with
very little effort directed to monitoring the design and

maintenance phases.

The existing component phases need to be connected in a more
systematic manner. In this way, each area of the development
process can be classified according to the type and amount of
resources it requires. If an accurate profile of development
activities is to be obtained, items such as the programmer's/
designer's use of core, central processing unit (CPU) time,
and input/output (I/0) activity must be logged during the
activity. The types and number of interrupts initiated by
the user and their frequency give some indication of devel-
opment activities in an interactive environment, but they

are inadequate when batch procedures are evoked.

2.3 SPECIAL CONSIDERATIONS IN AUTOMATING SE DATA COLLECTION

The degree of automation of data collection is dependent on

the following: (1) the sources of data (real and potential)

S
ORIGINAL PAGE |
OF POOR QUAUTY



910kD 2317 juswdoTsAdg SIBMIIOS

THS TeotrdAl

*T-¢ 2anbtg

!

ONILSIL NOLLYIAWIS SISATYNY | sisavnv anv INIWIDNVHNI
anv oUVInWIS || SISAIvN ONILSIL NV
NOLLVHDALNI W31SAS JONVNILNIVIN
O
m
@
0]
z
1300W z
a3nviaa m
O
w
>
(o]
~
Y
WA NDIS3g HONOUHLYTVM NDISIO o NOLLINI43Q
o a31Iv13a noisia  [¢ 13AIT-d0L siNawauinoay [¢ W37180Hd

oy
faf o
O <
<< 2D
o o
-l O
=

=8
mp
Z .
ol e
o™

i

~




and (2) the level of system support to be given to the de-
signers and developers of an automated system. Ideélly, the
data collection should be done at the highest system level
possible, rather than as some invoked procedure or called
application system. This ensures the uniform application of

data collection for all users.

Another special consideration in automating SEL data collec-
tion is the case of subjective data. Because software de-
velopment is primarily a human activity, certain types of
subjective information are desirable. However, it is nec-
essary to decouple the subjective data from the automated
collection process or, where possible, to restate the goals
so that they can be specified objectively. (Subjective data

are discussed further in Section 4.)

2-4 PAGE 15
ORIGINAL
OF POOR QUALITY



R

SECTION 3 - SEL DATA SOURCES FOR AUTOMATIC EXTRACTION

One of the goals of this document is to define the type of
SE data that can be collected automatically in the SEL. This

section discusses those types of data.

The computers available to SEL users are the Digital Equip-
ment Corporation (DEC) PDP-11/70 and VAX-11/780. These com-
puters are rich in sources of data in their own right. 1In
addition, several software tools and utilities already exist
in the SEL which provide other sources of SE data. Table 3-1
gives a lengthy list of current and potential sources of
online SE data in the SEL. The remainder of this section
summarizes the currently available sources, in some cases
providing examples and brief descriptions.

The types of data which could be collected automatically are

broken down into the following categories:

Accounting information

Keyboard monitor

VAX object module analyzer

Requirements analysis tools (MEDL-R, PSL/PSA)
Programmer workbench

Text editors

Program Design Language (PDL)

Utilities

Compiler and linker statistics

FORTRAN Static Source Code Analyzer (SAP)

3.1 ACCOUNTING INFORMATION

Accounting routines generally provide information about re-
source utilization (such as CPU and I/0 usage, direct-access
volﬁme usage, and page faults) because their primary purpose
is to provide a basis for billing projects. However, most
systems allow for user-written accounting routines which col-

lect data for later analysis.

3-1



Table 3-1. Sources of Online Software Engineering Data

1. Compiler/asembler statistics (number and type of coding
error)

. Linker/task builder

. Online debugging tools (ODT)

2
3
4. Accounting files
5

- . Software engineering tools (e.g., PSL/PSA, MEDL-R, CSMR,
i FINREP, MARS) '

6. System error log
f\; . Overlay descriptor files (i.e., who calls whom)

8. Automated Program Design Languages (e.g., Caine, Faber,
and Gordon)

¢§ 9. Text editors (e.g., 0ODC)

10. Keyboard monitors (examine each keyboard entry for soft-
”1 ware engineering information)

11. Programmer workbench

12. Performance measurement and monitoring (e.g., Boole and

} Babbage)
13. Login/logout information
X 14. System management records
15. System and user-developed utilities (e.g., PIP, COPY,
DIFF)
_5 16. Financial tapes

17. User directory information (good source of change infor-
g mation)

18. Source analyzers (e.g., SAP)

19. Resource estimators (e.g., Price S, Doty, SLIM, GRC)
20. System services (SYSSGETJPI, GETTSK)

21. Error trapping mechanisms (exit handlers)

22. Complexity functions (e.g., Halstead measures)

23. Maintenance procedures

24. Data bases

25. Configuration management systems (CAT)
26. Formal test procedures
e 27. Dump/trace facilities

28. Cross reference programs

3~-2 E 1%
y ORIGINAL PAGE
| OF POOR QUALITY




& 5
:
il

5 i

Since the interface with the system already exists on both
the SEL PDP-11/70 and VAX-11/780 computers, this area pro-
vides one of the most reliable and easily implemented methods
of obtaining resource utilization information on a project-
by-project basis. Data set information is already recorded
whenever a file is opened, scratched, renamed, closed, or
processed by end of volume. A SEL enriched accounting pro-
cedure could form the basis around which a more comprehensive

and elaborate data collection scheme might be built.

The types of information currently available in the VAX-11/780
accounting file are shown in Figures 3-1 and 3-2. Similar
types of information are available on the PDP-11/70.

3.2 KEYBOARD MONITOR

Both the VAX-11/780 and the PDP-11/70 provide collections of
routines which can be linked with user programs to provide
the capability of processing command lines dynamically. The

system facilities include, for example, the following:

Routine

Name Description Function

GCML Get command line Retrieves keyboard
. input

CsT Command string inter- Takes command lines
polator from the GCML input

buffer and parses them

This set of software can be used to develop keyboard monitors
that examine each line entered at a terminal for SE-related
data. When it exists, the SE data would be extracted and
stored for later processing and analysis. Because of the
high volume of data obtained in this manner, rigorous screen-
ing and filtering techniques might be required to extract
pertinent SE data. It is, however, an area that warrants

further investigation.



=W -
v e e e

0~ Oy O;

11.
12.
13.

14.

15.
16.
17.
18.
19.
20.

Message type
Message length
Final exit status

Process identification
(PID)

Job identification
Termination time
Account name string
User name string

CPU time in 10 ms units
Total page faults

Peak paging file usage
Peak working set size

Count of buffered I/0
operations

Count of direct I/0
operations

Count of volumes mounted
Login time
PID of subprocess owner

Termination message length

Job name (batch)
Queue name

21.
22.
23.
24.
25.
26.
27.

28.
29.
30.
31.
32.

33.
34.
35.

36.
37.
38.

-39.

40.

Symbiont page count
Symbiont QIO count
Symbiont GET count
Time job:was queued
Name of print job

Name of print queue

Length of print accounting
record

User message area

Job termination

Batch job termination
Interactive job information

Login failure process
termination ‘

Print job accounting
Inserted message

Insert message into
accounting file

Create a new account file
Enable accounting

Disable accounting

Enable selection accounting
Disable selection accounting

Figure 3-~1. VAX Accounting File and Termination
Message Contents



UOT3eWIOIUT OTTJ BUTIUNOOOY XYA °Z-€ 2Inbta

0 01 o8 701 £0'1 151 SG1FTIGT TIB86T-NAM-GC T LG
[ v 69¢ 55b Lyt e £6E . 9610151 TR6TI-NAIC-SE I 03
o Z TGNV OLIFTISY 13ecT~-NAT-GC 4 54
b2 14 TONYA LOIPTIGY I86T-NAT-5C 4 504
L% < J0HA43INIM . FI16015Y 1351-NAM-5C 4 [R4
G i9T 98¢ 86 L5°9 £e8B EEIGRIVT 86T~ -GC 1 3
RUTS k4 c40718x3 ) CCLECIST T86T-NAC-5T 4 SO [72]
174 £ 40NM307 +OIBGILT 164T-N 3 SO0 - w
09 < 4043070 L5105 T 18&4T-NAM-GT 4 30335 ul u
Phe ] o1 SINA3 Gbiobibl 186T-NAQ-3C 4 Consy L) <t
[} 0101 04625 0905 £6°65 £81T FEIETIPT 136T-NAM-GC 1 CHn 34 <D
2LT 7 angaa LEILLILT 18S1-NAM-5C 4 MOER] oo
. 0 96 681 509 A 2 19¢ CILTRIVT T86T-NOAC-GT T P SN
oty [ LINIS ICIFEIPT IB&T-NAF-GT 4 SorEa -l 2
8INT 1€ ana3q BEIEELRT T8&T1-H - Lo N < e
[ PR TAN 1302 £re 95+ €5 9804 FCIBOIET TBGI~NAM-GC 1 10 i = o
A0 e on3349 CTIRTIPY I8a1-~-NUW-68 4 = 0.
13T vz ana3a I2I0TIeT IB&TI-NACr-5C 4 mm
o] LA LLy £bT 691 13743 00IPTIILT IGBST-NNM-5C 1 7 1.
0 181 1837 o8 38 A3 (X887 SE1460LET I86T-NAM-5T 1 3 e Yo
[ (23 1611 14 (4204 L1e LESLCLVT IBS1-NAF-5C 1 <
. 4 441 £8¢ 188 £b*d 048 PRIGEIET IBST-NAM-5C 1 < 2
i 4 140M139 LTIVELTT T84T-NOM-5C 4 £ i W
DVES £ 3N 4 LTIVTIET T86T-NOM-GT 4 € 3 1
eT1 € 34453714 BOIYTIEY 186T-NAT-RT 4 z 2 ™
EATR z 374vl LELBILIET I397-NAM-5C 4 by P
cq7E ? TlLY3a I£33138T 1841-NNC~-BC 4 £ 3
0 [£:3 £I¥8 L16T &L T 6L58 PSITEIOL IB4T-MAF-GT I i H
£7¢8 Vo THNWLINT LEVLGIET TBETI-NAM-5T d 1 hi
Q 818% 869 £6T6 0Lt 15E cisy CI8THTT TBST-NNF-AT 1 corld
87588 25 and3g EIIETITT T86T-NIM-BC 4 S003s
0 2334 F501 1188 LE*98 26T TE:8IICT 1881-NAF-BC I S0y
0 6811 00TV 18524 [AREA ! 11948 6CILTI0T IBST-NAM-GT 1 Teand
n? < ERELSS TTI558TT 1861~-UAM-5C A L0334
9 355 £06T vESE L4058 £b LT HEIEDITT TBSTI-NNT-5T I DI
Q 146E 1R AN 08191 EE°LTIC 568V £IIBTIQT 1801~-NAM-5C 1 Todld.
EXSS < 31581 FUILELTT 184I-NAM-G0 d VR0
713 < 31491 CLOLTT (186T-NNAF-5C0 4 T0234
¥4 4 14817 . LSISCITY 18e1-NAM-5E 4 Tagn?
11817 0 cTL 7IcC 0T 8ET 145 FOLLIITY TEST-NAr-6T 4 TEnn
0 234 768 £19 £0° ¢ &11 TTIETITT 1863-HAT-GC I Sldds
0 83£¢ LoLE 856C gL b 1 3:14 £0t65060 T86YT-NAS-G8 1 TO3H
* 0 2917 5E£871 0401 940 0C LTLT SE16E10T 1567T~-NAr-GC 1 TONIy
%) 4 N3z EiFOITT TB8OT~NMWW-5T 4 Teony
HAZ 0 80C1 86 LZE*'8FT 068 FEITOITT TEST-NOL-GZ 4 Yol
9 Fviz 86T (=1 24 £V 9Lt 05828 STHLTIOT I8al-N-5C 1 ToLa
52 < FEICSI0T To61~-NAC-5C 4 Tegay
0 ve 501 [V § Tl $EITSIOT TBST-NAr-5C § ooy 7
as z $0:0510T 1B36T~-KRAM-5C 4 ToElY
511 z £0I0510T I8&T-NAM-5C 4 £4834
5019 INO0D-9d AWYR-A07 SLNNOW-TNNA 0/T NI 0/1 3nd S1Nv3-94 €I338-N43 §335-0354v¥N13 IWIL-LNYIS 3dAL EEE

e, e — PN, e

iy




3.3 VAX OBJECT MODULE ANALYZER

The VAX object module analyzer (ANALYZE) provides a‘descrip—
tion of the contents of an object file or the symbolic infor-

mation appended to a shareable image file. 1In describing
the records, ANALYZE also identifies errors if they exist.

This information is less amenable to further analysis, be-

cause its content is sketchier than that given by source
code analysis. It is given here as an additional source of
SE data.

Figure 3-3 presents an example of the output from the ANALYZE

option.

‘3.4 REQUIREMENTS ANALYSIS TOOLS (MEDL-R, PSL/PSA)

Requirements analysis encompasses all aspects of software

development prior to actual system design. The SEL has
conducted some ground-breaking studies in this area by ex-
E amining currently available requirements packages such as

} the Problem Statement Language/Problem Statement Analyzer
(PSL/PSA, Reference 3) and the Multi-Level Expression Design
s Language - Requirements (MEDL-R, Reference 4). Computer-
aided tools such as these can be modified and enhanced to
extract relational and hierarchical data from their associ-

ated data bases.

The basic concepts in automated requirements analysis are

. well documented (see References 5, 6, and 7). Requirements
;i analysis seeks to ensure correctness of the end product,

N unambiguity, consistency, and completeness. If a completely
automated data collection system is to be developed, more
work must be done to refine and/or develop more tools in

this area.

3-6

WRIGINAL PAGE 9
% OF POOR QUAUTY
i



5
|
o

|

FRERRERR KRR ROk e oot dorniookebdonk ik x
EHEKRKE R EREKEYR Nztive ObJdect Module Amsluzer Version 4.03 ¥dvdnkdvdvkdx |
RERKKHCRKKEL KKK A KA KEEAAKE  Anslusis of file HHACEXELRERKEREKETRPREERLKT Lk
HEERARKKRERR LRk _DEBISCFOYNLFOYOS . ALLOCITSTSAL . ORI 72 Ykkddordkykxkdd
AEKEKKKKEK KR KL AREREEREK  FT-CSEP=-81 201021146 Fidkkkiirfokrorsdrit iy

KEEKAKEKKKL L KR ERRERRL R R 0o ook koo ook ok ok R ok okl koeskon ok

WrrrEEYRr RECORD i I$ & MODULE HEADRER S4 RBRYTES LONG {0
STRUCTURE LEVYEL = ¢ ’
MAXIMUM RECORD LEMGTH = 1024
MODULE NAME IS "TSTSQLSMAIN®
MODULE IDENT IS *01°*
CREATION DATE/TIME WAS 18-Auzg-1981 1
LAST FATCH DATE/TIME WAS 18-5us-1981

»

543
5124

FrEFMeF»r> RECORD 2 IS A LANGUAGE FROCESSOR SURB-HDR 24 BYTES LONG
ASCIT DATA 183
VAX~11 FORTRAN VY2.2-40

N
o
\‘I

I
¥

2rrrrekkx RECORD 3 I8 TRALEERACK 41 BYTES LONG <4 {{{4044040
COMMAND 1 I& STORE IMHEDIATEs 22 (DEC) BYTES STACK= 0
IMMEDIATE BYTE STREAM (IN HEX) FOLLOWE

- — o ——— — . . - Y WD =y o W G man ot e G S - ) Ao A Y SR S - T 0 o S P

o 12 EBC 00 01 0 00 0C <CE S4 53
i< S4 82 S1 31 24 4D 41 ay Ak 12
20 RE 00
COMMAND 2 IS STRER « 4 STACK= 4
P - SECTION NUMEBER = O
VALUE STACKED = 0 (DEC) 0 (OCTAL)
0 (HEXARECIUAL)D
COMMAND 3 IS STOFIDR ¢ 27) STACK= 0
COMMAND 4 1S STORE IMMEDIATE, 12 (DEC) EYTES _STACK= 0
IMMEDIATE BYTE STREAM (IN HEX) FOLLOMS?
0 1 2 3 4 S é 7 8 g
0 OB 54 S3 54 52 51 31 24 4ap At

Figure 3-3. Output From the VAX Object
Module Analyzer (ANALYZE)

AGE ¥
OR\G\:NAL QUAL\T“
OF



‘ ‘

|

3.5 PROGRAMMER WORKBENCH

- The programmer workbench (PWRB) concept'is génerally‘regarded

as a highly specialized computing facility dedicated to sat-
isfying the needs of software developers. 1In principle, it

is a front end which provides a convenient work environment

and a uniform set of programming tools across machine bound-
aries. PWBs have been configured for many diverse hardware

environments and have supported development for many target

computers.

Recently, GSFC Code 580 has embarked upon the development

of phase 1 of a PWB tailored specifically for the Code 580
software development environment (Reference 8). It is sim-
ilar to the well-known Bell Telephone Laboratories PWB/UNIX
(Reference 9). However, because of the continuing need to
collect statistics which accurately describe the SEL environ-
ment, the development of Code 580 PWB phase 2 provides an
excellent opportunity to integrate automated development
with automated data collection. The tools and methods used
in conjunction with the Code 580 PWB should ‘place high

emphasis on SE data collection.

3.6 TEXT EDITORS

Text editors are available in several forms in the SEL VAX/
PDP environments. Editors are one of the primary means by
which data are created and modified in the development of
software. If detailed creation and change information is

to be collected, one viable option is to provide text editors
that have been modified to extract SE data. Modules which
provide summaries of changes made to a given module could
easily be coupled with the Code 580 PWB to extract data

from interactive sessions and record it for later process-

ing or inclusion in the SEL SE data base.

3-8 oiGINAL PAGE 18

OF POOR QUALITY



Some work has already been performed in this area at GSFC.
An Online Data Collector (ODC) has been developed, which is,

in fact, an SE-related editor (Reference 10).

3.7 PROGRAM DESIGN LANGUAGES (PDLS)

Software development is still largely a manual process.
There has been relatively little effort devoted to design
validation and analysis. Top-down, structured design has
contributed to the formulation which must precede design
automation, i.e., it must be known just what constitutes
design. Although some initial work has been done by Freeman
(Reference 11), there is still little organized knowledge of

what a software designer does.

Flow charts and baseline diagrams still remain as the prin-

ciple method for representing software designs. The machine

processable design representation of the Caine, Faber, and

Gordon Program Design Language (PDL) system is one of the

few automated design tools on the market (see Reference 12).

Once more of the design information is in machine-readable
form, more can be done to develop procedures for automatic-
ally extracting SE data for the design process. However,

it is still not clear how much can be done to formalize soft-
ware design. This is an important area which needs to be
investigated more thoroughly before significant progress can
be made towards automated collection of software design

statistics.
3.8 UTILITIES

The SEL defines a utility as any component that is generated
for the purpose of staisfying some general support function
required by other applications software. This class of
software contains programs that do not fit into any other

category in the software development life cycle.

3-9  ORIGINAL PAGE IS
OF POOR QUALITY



The SEL PDP-11/70 and VAX-11/780 both support forms of the
Peripheral Interchange Program (PIP), which is the primary
data manipulation software in the SEL. Utilities such as PIP
usually provide statistical summaries on the results of the

operations performed or could easily be modified to do so.

Other SEL utilities, such as the VAX Difference Analyzer
(DIFF), the DISKUSE utility, and the locally developed FORTRAN
cross-reference program (XREF), are examples of the type of
support software that already exist in the SEL and that could
be incorporated into an automated statistics extraction and
reporting system. In the VAX environment, the DIFF utility .
compares the contents of two disk files and creates a listing
(or file) of the records that do not match. A sample execu- -
tion of the DIFF utility is shown in Figure 3-4. The DISKUSE
utility provides data on storage requirements, sorted by
project and group. Sample output from this utility is given

in Figure 3-5.

3.9 LINKER/TASK BUILDER STATISTICS

The VAX-11/780 linker and the PDP-11/70 both provide data
on the structure and content of executable images and shared
global areas. The MAP option, when specified, generates

data on the following:

Module name

Object modules which comprise the image
Image sections

Symbols

Module address

Module lengths (size)

Line statistics

Module creation date

Language translator that created the module

Global sections referenced

3-10  ORIGINAL PAGE [s
OF POOR QuUALITY



¢ QIFF

$.File 1% CFOYH, CRCTHHDL ERLFOR

t.File 23 LFDYM FDRYOE THNDLER ¥ AR

S S PR R REE S SRS ER SR E LT NNESE A REANAAEASEARER DL
FREREEY BRI XY Ay e FILE CONPFORE UTTLINY ¥
ERXEXAXERRK A Y0¥y Y DIF —-— VERSION 1. LR R E *k%"“‘l”YK
ISP S EF SR LSSV IR VR E RSN RS A IR E LRSS R RS SRS ASRS RS SRR ERNAREE S

IP3R2$23520"
: tx

?Yk*?ii!**k*****;f**l**kk?#?#tt?**?Yfﬁ**
?******!l!*****ll**i%*

FILE SYILFOYN,SRCIHNDLER,.FORI3Z
18 CHARACTER TNAMEX(X) »PRNAMEX1Z
49 CHARACTER INFUT*EO0,QUTFUTXS8O,TERMIAS, TERMOYS
ES 2RSS S LS FES SIS FFE TS S
FILE SYICFDYN.FDYO3IHNDLER.FORI479
48 CHARACTER TMAMEF¥ () »FRMAMEX12Z,MBXK12
49 CHARACTER INPUT*80,0UTPUTH#Z0s TERNIYS, TERMOXT
EEPTEETEL SIS CIECELSEF S ERELEC IR TR RIS ESESELLR T YN
PSS SIS TSI SRS TASILT IV ST LSS RS ELSTRLAS S S SY
FILE SYICFDYNL,SRCIHNDLER .FOR333
S3 INTEGERY2 ITMHAF(2),ILENsJLEN, . JFLAG )
54 c
AKREKAIKEKERI KRR KRR R
FILE SYILFDRYN.FDYOZIHNULER.FORS 479
53 - INTEGER¥2 ITHHAF(2), ILEM, JLEM, JFLAG, MEXUNT s ICHAN
54
b2 S22 R S SRS LTS ERFELELS XSS SR RASSRRSEFEL S S TS P
AEEKKKKEKKKKKKKETKKKIOKRF KA I KE KRR KRR ERF KRR IR X
FILE SY!LFOYNJ.SRCIHNDLER,.FORF33

82 €

83 [ OFEN MAILEBOX UNIT

84 C

8% HAILEX = 3

84 OFPENCUNIT=MAILEX s TYFE="NEW s NMAME="MATLEOX ,DAT"
87 ¥ RECORDSIZE=1024,FORM="UNFORMATTED')
88 c

a9 c LOAD HMAILROX BUFFER

90 c

?1 BUFFER(1) = LOC

22 TUCFER(ZY = IFLAG

?3 PUFFER(3) = NARG

?4 NAKMIX = HNMLNAM

95 c

268 Do 10 I=1,12

?7 10 AUTFLEC(I) = AUTFIL(I)

73 c

99 IF{(MARG.LE.0) GO TO 30
100 c

101 c LOADl GLOBAL MAMES IM MAILROX BUFFER
102 c

103 00 20 I=1,NARS

104 BUFF(I) = BLANK

105 20 CALL XTRACT(ZVAL(DARRAY(I))»BUFF (T »KLEN)
106 c

107 30 IF(IPASS.6T.1) GO TO SO

108 c

(SR TESS SIS CECETELASIN SR 2201
FILE SY!CFOYN.FRYOZIHNULER.FORIA79

82 WRITE(&9123) KFLAG,KERROR,NUMARG

83 123 FORMAT(’ HMDLERS JFLAG,KERROR,MNUMARG = ‘»3I10)
B84 c

83 IF(IFASS.GT.1> GO TO S

8% [

KHEKAKE X RRREEROET KL ORI o E0r ORS00k
RS S St 2 IRt TS CR SR 2SN S AR RE LR L 2]

Figure 3-4. Output From the DIFF Utility

3-11  QRIGINAL PAGE 1S
OF POOR QUALITY



i
PREPYN  TOVAS MEAMY e vscsrpopoponcsspnen R17
PRy mnegs roren ssapasasesrmeposeans =1
Ry T MVAR BLATY o ierepsseraposnnns S1¢
thyu.anq:.§m1 . r9

assorpepapen
PENYS _mhane poeeeg)
PERYY _PRYns NENTATY

oo age

semacanpagy

74
121

FENY» OOVAR ATy, 2F3
Fenyw _Crvag Airory . (g

rphyﬂv.t’nv'nn.n;jnmnrj . 1994

FERYM Rvag sprmmeral 17413

FENYN_ Tnwmas npdgn ts

fF‘NYM.T:V(\R.QFbQﬁu'!.. . ﬁ1

rpﬁy‘x"’nvnq_er:':';nr-.jr) . LB

TERYY, FRyas agrnt ... 2Fp

fvﬂv“.rnvn<‘“aarrnrv3_ csasea =y ]

TEAYN TPVOR TaB01, .., ssaso, 1A

FERYN TRvag rrerTay |, camen 2845

r’p!\.vv.".‘-:vr\R.'ﬂc Q’T"'.!)"d‘-‘?’ cpenes ARAD

. TERYN SAvAR TIMSY .., pecepoa a1
> PERY™ POVAK WT¥S21 L .eeieecsesesas a
f'FT‘oYv.v-n-_,(\:.tr‘r1nh1..-'.".._,"’_ rosemsen 570
'V“V“.VW"G=."D'"1......-............, 19

FENYM TRVOR YO0V i esasepesncana R

PRRYY (PRT0E YITEY L ieesesenas 384

’ A SIS N presmcanses 1845
PERYS INLGY L, chsresenes LELES

fphyn.ﬁbbrm1..,.’ JN 1271

fphyw‘ﬂaﬂypsl.’-! csos 47

renyn sy L, seses 1279

" L L N 782
mNTAY Ry A2N1TA

TC"HQJ......,.,.,.,., 2573

rgvnq_rnnu1...__’.,_’ 27

FGYAS FaPnTadeY L, ., 23

raUns namen LD &7

FAMAS MIYREY i eeenesnns ’ 272

FOY AR DPEAL T i eesanmsopeasnmnnnoscs 144¢9

FEY AT PATLARY s asepanasns . 2317

Echd S L B . 179

POy LS T I TT] it ieeerasomssanennnsnosns 932

TAThT rar e 27Q7%

Ceiabors I N .. 2164

A T .. 48§
PCDEQ.“”“.°T°T“?’.....;:..........,.; on

e L L T 129

mrmar oo X 341

o PN QY st esesnsencnnasananasnsanennn 188G
erS”.‘LlJ?.,,,.,.,.,.,r,.,.,.,., 45

i PR D] iyt eeannpsasanasnsmn 794
PRAQE PODETYY | imeeeonseposassnmsnnns AR 4

PMARE S ATRTMY i iaasepeanses el

L - 247

TOTAY 1ARC S4R7A

L e a

LYR/MAD

L8 Malas 43

9

199447

Figure 3-5. Output From the DISKUSE Utility

ORIGINAL PAC
OF POOR QUALITY




Number of virtual pages required
Base and ending addresses of program sections (PSECT)
PSECT attibutes

Library access

Symbol cross reference

COMMON block usage

Stack size

Image type

Storage requirements for image
Number of modules

Number of global symbols

Virtual memory allocated

Overlay descriptor

<

Sample link output is provided in Figure 3-6.

3.10 COMPILER STATISTICS

The FORTRAN compiler options provide many items of data per-
tinent to the data collection process. The Storage Map
section summarizes information about memory allocation, and
the Program Section Summary describes module structure. The
Entry Point Summary lists all entry points and their addresses

and identifies the section function.

The compiler listing can be used to obtain the following
data: '

Functions and subroutines called

Total memory allocated

° Program sections

° Entry points

° Variables

° Statement function
° Arrays

® Labels

®

°

°

Module names



~DBBL: [FDYN.FDYC3,PARMIPARTST,.EXE;9 9=SEP=1981 18:55 LINKER V2B.%4

femenworancevnnmnd
! IMAGE SY. 02818 !

B T TS

VIRTUAL ¥EYORY ALLOCATED: 00000200 NQ0279FF 0927800 (161792, BYTES, 316. PAGES)

STACK SIZ2E: - 20, PAGES )

IMAGE HEADER VIRTUAL BLACK LIMITS: 1, 1, ¢ 1. BLOCK)
TMAGE SINAPY VTRTUAL 8LOCK LIMITS: 7, 74. ¢ 73. BLOCKS)
TMAGT NAYE AND IRENTIFICATION: PARTST 01

- NUM3RR OF FILES: 17,

+ NUMBRR OF QMULES: 70,
NUYBER QF PRNGIAM SECTIONS: 30,
NJ¥EER OF ALOSAL SYMROLS: 1013,
NU¥BFR OF TMAGF SECTICNS: 18,
USFR TRAMSFE®? ADDRESS: 00009C00
DEIUGGFR TRANSFER ADDRESS: 80000168

. THAGE TYPE: EXECUTARLE,
HAD FORMATE DEFAULYL IN FILE ".LRC1:[FDYN,FDYO3,PARMIPARTST, MAPs1N
TSTIMATED MAP LENGTH: 117. RLNCKS

O T T e T T T

e { LIMK RUMN ST/TLSTICS !

T Y )

PERFOR¥AYCE INPICATORS PAGE FAULTS  CPU TIME ELAPSED TINE
CCMMAND PROCRSSING: o4 00:00:00.33 00:00:01.85
PASS 1t 773 00:00:03,.10 00:00:07.44
ALLOCATINN/RELOCSTION: &3 00:00:00,17 00:00:00,52
PASS 2@ 314 00:00201,95 00:00205.75
AP DATA AFTER ORJECT MQODULE SYNOPSIS: S1 00:00:02,01 00:00:02,.11
SY¥B0L TABLE QUIPUT: 10 00:00:00.04 00:00800,17

TOTAL RUVY VALUES: 1315 00:00t07,.50 00:00217.84

USING 3 WOPKTNG SET LIMITED TQ 390 PAGES AND 140 PAGES OF DATA STORAGE (FXCLUDING IMAGF)
TOTAL NUMBER 03JECT RECORDS READ (BROTH PASSES): 1458

OF WYICH 5720 WERT TW LIBRARIES AND 136 WERE DEBUG DATA RECORDS CONTAINING 4255 BYTES
3911 BYITS OF DERAUG DATA WSRE WRITTEN,STARTING AT VEN 75 WITY 8 RLOCKS ALLOCATED

RUMBER OF MODULES EXTRACTEDN EXPLICITLY = 2
WITH S3 EXTRACTED TO RFSOLVE UNDEFINFD SYMBOLS

45 LI3RaRY SEARCHES WERE FAR SYMAOLS NOT IN THE LIRRARY SEARCHED
A TOTAL OF O GLORAL SY¥BOL TABLE RRCORDS WAS WRITTFEH

/MAP/EXEC=PARTST PARTST,CGETADPD,ALLOC,CKNAMF, (FDYN,HOLDIRADMAS/APTIONS

Figure 3-6. Sample Link Statistics

ORIGINAL PAGE IS
3-14  OF POOR QUALITY



s

o

° Program section attributes
° Module size

° Compile time

Sample compiler data is shown in Figure 3-7.

3.11 DIRECTORY INFORMATION

Files maintained on the PDP-11/70 and VAX-11/780 are refer-
enced through directories. The directory for each user

contains the following information:

File protection

Size in blocks

Owner '

Date and fime created

Date and time last revised
Expiration date

File attributes

Record format.

Record attributes

File organization

Total of in-use/allocated blocks
Number of files

Version numbers

Additionally, Digital Command Language (DCL) commands and
system utilities such as SRD can be used to obtain sorted,
specialized subsets of data for a given user identification
code (UIC). A sample directory listing with the full option
is shown in Figure 3-8. The system file analyzer (SFA) can
also be used to display formatted dumps of disk files, as
shown in Figure 3-9. ’

3-15 ORIGINAL PAGE IS
OF POOR QUALITY



eieq asTtdwo) oidueg

*L-€ 2aInbtg

Sadyd 8L SAY0AIN JInYNAD

LSY. $81108d. sula

SUNODAS 9L”v $3anIl wiEsdvna

. SANUDHS TL°p $3nTs Niw

SIS Lels ADALYNLdRDD

6T=SNUOILYINIINGD/ 3CA0DTANIHDYWUN/ SINITTION/ SONINYYM/  RZIKIXdD/ V1/ ONILUDI3TOUN/ LeLd/

CXONBHEIYYL ' STUTKASON) =DY80,

(MOTAUIAD SONNDYON ) =HDInD/

I8Ilu¥d LSIT/ nValdéDa

Su31417¢Nu UNVWNOD

SALXY LSH8Y = G3LVDOUTY WOYdS 1YLOL

ra
[0 28 [ pAct) Ln083y ¥1aS10 20717y
QaDN3¥TA3Y SANILNOBUNS UNY SNUILONNA
- 3000Q% L2 23383 __1200000u=1
tSS§ 0C000000~T 1¥Yy 13000000~ €1 % o3 %k 9 ok s *k
i & §sduaay 138v¥1 $suyaay 1347 SS3YUaY 138 s§3UAGY fiduy $Saduay

$13u¥

;9

654804 ISLUVG[I0MdAX  E0AQI*NRQA) 2 ERuA™

€2i95i37 1861~c3S=8

0p=Z°ZA NYHIMUJ TIeXVA 0£3663R] 1861-ddS~8

CRIGINAL PAGE IS
OF POOR QUALITY

3-16




DIRECTORY .ORB1:(FDYN.FDY03,ALLOC]

RDDQ,FOR:12 SIZE: 4/6 CREATED: 11-JUM=1981 19308
OWNEP 212,003} REVISEN: 11-JUN=-1981 19:09 (1)
FILE IN: (1005,8,0) EXPIRES: <NONE SPECIFIED>
FILE PROTECTION: SYSTFM:RWED, OWNERIRWED, GROWP:RWE, WORLD:RE
FILE OPGANIZATION: SEOQUSNTIAL
TILE ATTRIRUTES: ALLOCATINN=6, EXTEND=0
RECORD FNRMAT: VARIABLE LENGTH
PECORD ATTRIBUTES: CARRIAGE RETURY
ALLO,FOR?S3 SIZE: 5/6 CREATED: 18=JUN=1981 17:32
NWNER: r212,003) REVISED: 18-JUN=1981 17:32 (1)
FILE ID: (1661,41,0) EXPIRES: <NONE SPECIFIED>
FILE PROTECTION: SYSTEM:RWED, OWMERSRWED, GROUP:RWE, WOPLD:RE
FILE ORGANIZATION: SEOUFNTIAL
FILE ATTRIBUTES: BLLOCATION=6, EXTEND=0
RECORD FORMAT: VARIABLE LENGTH
RECORD ATTRIBUTES: CARRTAGE RETURY
ALLOC,FOR; 119 SIZE: 25/30 CREATED: 11=JUN=1981 18123
AWNERS [212,003] REVISED: 11-JUN-=1981 18:24 (1)
FILE IDP: (1076,7,0) EXPIRES: <NONE SPECIFIED>
FILE PROTECTION: SYSTEM:RWED, OWNER!RWED, GROUP:RWE, WORLD:RE
FILE ORGANIZATION: SEQUENTIAL
FILE ATTRIBUTES! ALLOCATION=30, EXTEND=0
RECORD FARMAT: VARIABLE LENGTH
RECORD ATTRIBUTES: CARRTAGE RETURN
ALPHA,FORP1L SIZE: 1/6 CRFATED: 9=-JUL=-1981 15:34
OWNER: 212,003] REVISED: 9=-JUL=-1981 15:34 (1)
FILE ID: (1151,13,0) EXPIRES: <NONE SPECIFIED>
FILE PROTECTION: SYSTFM:RWED, OWNER:RWED, GROUPIRWED, WORLDIRE
FILE ORGANIZATION: SEQUENTIAL
FILE ATTRIBUTES! ALLOCATINN=6, EXTEND=0Q
RECQRD FORMAT: VAPIABLE LENGTH
RECORD ATTRIBUTES: CARRTAGE RETURN
AVAIL,FOR:S SIZE: 1/6 CREATED: 26-MAY=-1981 13:36
OWNER: 212,003] REVISED: 26=MAY=1981 13:36 (1)
FILE IP: (325,8,0) EXPIRES: <NQNE SPECIFIED>
FILE PROTECTION: SYSTEM:RWED, OWNER:RWED, GROUP:RWE, WORLD:PE
FILE ORGANIZATION: SEONURNTIAL
FILE ATTRIBUTES: PLTL.OCATION=6, EXTEND=0
RECORD FORMAT: VAPIABLE LENGTH
RECORD ATTRIBUTES: CAPRIAGE RETURM
BLDFIL.FOR?2 SIZE*r . 1/3 CREATED: 15=-APR=1981 13:48
NWNER: (212,003) REVISED: 15=APR=1981 14:03 (1)
FILE IP: (3661,2,0) EXPIRES: <NONE SPECIFIED>
FILE PROTECTION: SYSTEM:RWED, OWNER:RWED, GROUP:RWE, WORLD:PE
FILE ORGANIZATION: SEQUFNTIAL
TILE ATTRIBUTES:S ALLOCATINN=3, EXTEND=0
RECORD FORMAT: VARIABLE LENGTH
RECORD ATTPIRUTES: CARRIAGE RETURN
CKNAME,FNR:28 SIZE: 8712 CREATED: 11-JUN=1981 19:00 .
OWNER? 212,003 REVISED; 11-JUN=1981 19:00 (1)
FILE IP: (931,14,0) EXPIRES: <NQNE SPECIFIED
FILE POOTECTTON: SYSTFM:RWED, OWNFR:RWED, GROUP:RWE, WORLN:RE
Figure 3-8. Sample Full Directory Listing
3-17 ORIGINAL PAGE Is

ORIGINAL PAGE

. OF POOR QUALITY
OF POOR QUALITY

ORIGINAL PAGE 13
At POOR O!'N' T



kkkkkkk

DUMP OF FILE?: _DRBI:IFDYN,FDVQO3,PARMIPARTST . EXE;9 ONt 9-SFP=1081 19:05:16,28

RARERRKXKRKRKKLRRARKKKKK  FOPMATTED FILE HFADER  R¥kikikopkkkgkkkkaorkkdorkonkokk

FILE NUMRER: 3947 0Fé8
FILE SEQUENCE: 3s N024
RELATIVE VOLUME NUMBFR: 0 0000
FILE HEADER CHECKSUM: 6470

FILE QWNTR: [000212,000003)
STRUCTURR LEVEL: , OD8=2

FILE EXTENSINN INFARMATINN:

FILE NUMBE®: 0 ngo00

FILE STQUENCE: 0 0000

RELATIVE VOLUME MUMBER: 0 00090

DIRECTORY BACKLINK INFORMATION!

FILE NUMRER: 7005 1BSD

PILE SFQUENCES 19 0013

RELATIVE VOLUME NUMBER: 0 0000

FILE STZF:

END OF FTILE RLACK: 82 00000052

ALLOCATED SIZE: 84 00000054

FIRST FREE BYTE: 0 0000

CREATINN DATE: 9=SFP=1981 18:55:36,95

REVISION DATE: g=5EP=1981 18:55:39,52
EXPIRATION DATE: <NANE SPECTIFTIERD>

FILE PROTECTIONS SYSTFMIRWED, OWNER:RWED, GROUP:RWE, WORLDIRE
FILE CHARACTERISTICS: CONTTGUOUS«BEST=TRY

FILE EYTFNT(S):?

STARTING LOGTCAL BLOCK NUMRER: COUNT:

(1) 257502, 0003EDDE 3. 00000053

H 3o oK 0o o ok K K e o KK R R K R ROR KRR R KR R AR RO R R R R R R KRR KRR KK

Figure 3-9. System File Analyzer Output

3-18 ORIGINAL PAGE IS
OF POOR QUALITY



3.12 FORTRAN STATIC SQURCE CODE ANALYZER PROGRAM (SAP)

The FORTRAN Static Source Code Analyzer Program (SAP) auto-
matically produces statistics on occurrences of statements

and structures within a FORTRAN program (see Reference 13.)

Statistics, as well as figures of complexity, are gathered

on a module-by-module basis. The SE data which might be

obtained through this source are summarized in Figure 3-10.

A sample of the output from SAP is shown in Figure 3-11.

L

o ‘g
!

3-19 ORIGINAL PAGE 18
OF POOR QUALITY



0
R 4:%

G,

MODULE TYPE AND EXTERNAL COMMUNICATION

Module type (main, subroutine, function, or block data)
Number of entry points

Number of COMMON blocks referenced

Number of names in argument Tist

Number of subroutine calls

Number of subroutine names referenced

Number of functions called

Number of function name referenced

Number of external names defined

Number of externally defined modules referenced

Number of arithmetic statement functions (ASFs) defined
Number of references to ASFs

Maximum and average length of argument lists in references
to subroutines and functions

COMMENTING OF MODULE

Total number of lines of source code

Total number of comment Tines

Total number of noncomment 1ines

Length of prologue

Number of embedded comments (total/prologue)
Number of comments appearing after !

- Number of blank comment 1ines

Maximum and average length of nonprologue comment blocks

"~ Maximum and average number of lines between comments

STATEMENT BREAKDOWN

Total number of noncomment statements
Number and percentage of executable statements
Number and percentage of nonexecutable statements

Figure 3-10. Statistics From the FORTRAN Static Source

Code Analyzer Program (SAP) (1 of 6)



STATEMENT BREAKDOWN (Cont'd)

Number and percentage of assignment statements*
Number and percentage of control statements*
Number and percentage of I/0 statements*

Number and percentage of format statements*
Number and percentage of NAMELIST statements*
Number and percentage of data statements*

Number and percentage of specification statements*
Number and percentage of statement function definitions*
Number and percentage of subprogram statements*

Number and percentage of other statements

Number and percentage of undefined statements**

*As defined by IBM GC28-6515-9, IBM.S/360 and S/370 FORTRAN-IV language
**Statements not decodable by SAP

CONTROL STATEMENT BREAKDOWN

o Number of IF statements:
- Number of logical IF statements
~ Number of arighmetic IF statements

¢ Number of GO TO statements:
- Number of unconditional GO TO statements
Number of GO TO statements as object of IF statement
Number of assigned GO TO statements
Number of computed GO TO statements .
Number of different labels used as targets of GO TO statements

t

§

Number of DO statements
Number of ERR= constructs
Number of END= constructs

Number of RETURN statements:
- Number of normal RETURN statements
- Number of RETURN i statements

o Number of PAUSE statements-
® Number of STOP statements

Figure 3-10. Statistics From the FORTRAN Static Source
Code Analyzer Program (SAP) (2 of 6)

s

3-21

Syjpiion



CONTROL STATEMENT BREAKDOWN (Cont'd)

Total number of branches in the code

Number of unconditional upward transfers

Number of nonFORMAT statements labeled

Number of branches to label specified in an argument 1list
Maximum and average level of DO loop nesting

Maximum and average number of statements in a DO Toop

ASSIGNMENT STATEMENT BREAKDOWN

5! e Number of assignment statements
e Maximum and average number of variables per statement
a} e Maximum and average number of operators per statement

SPECIFICATION STATEMENT BREAKDOWN

Total number of variables named in module

Number of variables referenced in executable statements
Number of variable names referenced in COMMON statements
Number of variable names referenced in EQUIVALENCE statements
Maximum and average number of dimensions for arrays

Maximum and average number of characters in variable name

SUBSCRIPT COMPLEXITY

e Maximum and average subscript complexity (i.e., number of
operators and parentheses)

MODULE TYPE STATISTICS (GLOBAL)

Total number of modules
Number of main programs
Number of subroutines

Number of function modules
Number of block data modules

Figure 3-10. Statistics From the FORTRAN Static Source
Code Analyzer Program (SAP) (3 of 6)

3-22



MODULE LENGTH AND COMMENTING STATISTICS (GLOBAL)

Total number of source lines

Maximum and average number of source 1ines per module

Total number of coded source lines ’

Maximum and average number of coded source lines per module
Total number of comment lines

Maximum and average number of comment lines per module
Maximum and average length of prologue .

Maximum and average number of embedded comments
Maximum and average number of inline comments
Maximum and average number of blank comment lines

Maximum and average number of coded Tines between comments

MODULE COMMUNICATIONS (GLOBAL)

Total number of entry points

Maximum and average number of entry points per module
Total number of subroutine calls

Maximum and average number of subroutine calls

Total number of function calls

Maximum and average number of function calls

Maximum and average number of external names defined

[ ———
e © o & o o © o

Maximum and average number of externally defined modules
referenced

'% e Maximum and average number of arithmetic statement functions
] (ASFs) defined

e Maximum and average number of references to ASFs

e Maximum and average length of argument 1ists in references to
subroutines and functions

STATEMENT BREAKDOWN (GLOBAL)

e Total number of noncomment statements

e Number and percentage of executable statements

} Figure 3-10. Statistics From the FORTRAN Static Source
Code Analyzer Program (SAP) (4 of 5)

3-23



ety
ol

STATEMENT BREAKDOWN (GLOBAL) (Cont'd)

Number and percentage of nonexecutable statements
Number and percentage of assignment statements*
Number and percentage of control statements*
Number and percentage of I/0 statements*

Number and percentage of format statements*
Number and percentage of NAMELIST statements*
Number and percentage of data statements*

Number and percentage of specifications statements*
Number and percentage of statement function definitions*
Number and percentage of subprogram statements

Number and percentage of other statements

Number and percentage of undecoded statements**

Ng *As defined by IBM G28-6515-9, IBM S/360 and S/370 FORTRAN-IV language
**Statements not decodable by SAP

CONTROL STATEMENT BREAKDOWN (GLOBAL)

Maximum and average number of IF statements per module
Maximum and average number of GO TO statements per module
Maximum and average number of DO statements per module
Maximum and average level of DO loop nesting

Maximum and average number of statements per DO loop

ASSIGNMENT STATEMENT BREAKDOWN (GLOBAL)

o Number of assignment statements

e Maximum and average number of variables per statement
e Maximum and average number of operators per statement

Figure 3-~10. Statistics From the FORTRAN Static Source
Code Analyzer Program (SAP) (5 of 6)

|
£

EEEnEre



SPECIFICATION STATEMENT BREAKDOWN (GLOBAL)

¢ Maximum and average number of variables named per module

) i e Maximum and average number of variables referenced in
- executable statements per module

-y e Maximum and average number of variable names referenced in
'} COMMON statements per module

¢ Maximum and average number of variable names referenced in
EQUIVALENCE statements per module

e Maximum and average number of dimensions per array
o Maximum and average number of characters in a variable name

SINGLE STATEMENT COMPLEXITY

e Maximum and average subscript complexity (i.e., number of
operators and parentheses)

Figure 3-10. Statistics From the FORTRAN Static Source
Code Analyzer Program (SAP) (6 of 6)




1

s 4 4%
DR

~

CONODDEDE-MDUIOE

L SR

4 AN L4 4 R

334d

Ba# g g n® 80 uwna i

TAMOMI®
0

now

TON—DR

(zZ 30 1) (av¥s) wexboag adzAT1euy apoDd
20IN0S DT3IL3IS NVIINOL 9yl woxg nding oTdwes *TI-£ =2anbtg

40 ¥33WNN "9 = SINZW3LBLS d3A0330NN JO0 J3SWNN ‘e = SLMILILYLS
SIN3NALYLS 3dAl 40 A3GWNN g = SINJW3LBLS INILNONAans 40 338NN 8 = SIMIILYLS
SINIWNILHLS ANIM3Y 40 d33H0N g = SINIWILHLS NenL3d 40 d38W0N 1 = SLMILTLYLS
SINILILELS qu3d 40 d3BWNN Q = GLNZWILULS WHEMa0Hd J0 ¥33HNN ‘Q = SLHAFLELS
SLHINILHLS 35NYd 40 J33UON 9 = SINIWILELS d3LWYEdd JO0 438NN “Z = SLHIWILULS N3J0 30 d3GINN
SINIWILELS  LSIT3KEN 40 d32WAN I = SIM3L3IYLS HAID07T 40 dITNN g = SLHIAIHLS mwme:H 40 d45HNN
SLNIWALHLS AT 40 ¥33ANN ‘a = SINZL 3 HLS  LIJIdWT 40 d38W0N °1 = SLNILTILRLS 41
SIHINILELS 41° d40 d33UNN -8 = SiMNdL JiHLS 0L09 40 mum::z ‘B = SINIWILIYLS  NOIL2HND
SIHIW3LYLS LulNn4 J0 330NN 8 = SINTL HLS a1 4 ‘8 = SIMIMAIELS  ENY3LXT d0 mmmi:z
SLHIW3LELS ONITWEAIN0T 40 ¥IAWNN 9 = SIMILILHLS AdLHT 1 = SINJH3LELS :
SLN3WNILHLS 4I4H3 40 $33H0N ‘8 = SLMIIHLS 37T 4GH3 "9 = SLHIWILELS
SINIWILHLS II0INT 40 AITINH 8 = SIN3L JIELS 3513 ‘a = SLNALALIELS
SINIWILELS ITHDT 40 dIFNH 7] = LHIN3L ALELS 3384370004 1 = SIH3LILHLS
SININILELS ITTSINIH3T 40 ¥ITWNN 0 = SINILILIHLS 30334 ‘0 = SIM3LZLELS
SINZWILELS - JNNILHET 40 33NN ‘g = SIMILILELS »3G02 1 = S5LIH3WIIHLS
SINWILELS 35070 40 J338LNN ‘11 = GIMINILHLS -0 ‘a = SLH3W3LHLS - A3 40 mpm::z
SANZW3LULS  BLUAAINTE 40 HITWNN 'Q = SLHIWILYLS  33IYd3NI44 ‘a = SLMIILELS WOTESH 40 |3aln
SIN3W3LULS 143230 40 ¥3INN ‘v = SINZWILBLS LNIUNaISSY ‘B = SLMINELYLS *430 4S9 40 333UNN

S¥3ALHNDS 3dAL INIHALHIS

2°'n a SHOTLINI 430 HOTLOHNA LHIWILBLS JL1AMHLIAY 40 JDUENTIMIL QMY 33300H
SLH3W3LYLS (3d0J3ANN 40 3JDUEINIINTL GHE d3GLINH Eer SINIWILHLS ATHLD 40 3DUINTIAIS qHY Y3EHNN
SLINIWILYLS mm:ﬁ;:mkm 40 J2WIHIINTL e A3aNNN 8 SLNZW3LYLS 1S1713WUN 40 39Y1H383d qHE §3dLNH
SINIWILELS Lull¥0d 40 ZIHLNIDNIL MY A238nH 2 SLNIWLEULS O-1 40 JOEIM3INIS QHY 38000
mbzmzmkmhm Higd 40 JOULNIINZL HY N3BINN w SINIILHLE *33d5 IdAL 40 ITLINIDATL JHY S33W0NN
¥
!

u

-

SINIMILIHLS "J3dS 40 JIYLNII3d qHY J39H0N SLHIWILHLS WHEND0H4aN5 40 33UIN3I43d dHE ¥3EWNN
SINIWILHLS T0ULHOD 0 3I9BLINIINI qhH H3AUNN SINIILHLS LHIWNDISEY 40 JIULMIINIL qHY §38LNN
SLN3WILYLS 3T8ULNIIKT NOMN 40 JOULNIDNAL aue 38NN m 83 1&g SIHIW3LWLS JFNEWINITXRT 40 JDWINIIYIJ ANE 33NN

SA3LHADD S5YNT LMIWILYLS

mmvwm
CDN‘TIDGJ

6’9 g1 SLIAIPS INIIO0D NIFML3E SINTT 40 dAIGUNN FOHAIAY NE KNTXEN
81 ¥ 513:438d LNIWIGD 3ND0704d-HON 40 HLAH3IT 3963340 GHE WL X

431 SOE] LMI0T HMNETG 40 430N
SLINFNOD 3WIT-HI 40 333NN Il SIANET LNIMOT 4300303 40 J38UNN

SIANIT 3N30T0dd 40 H3AUNM oe SAMIT INTI0T 40 480K

S3HIT 43003 J0_¥3adnd Gd SINTT 334N0S 40 A3NN

INANTHH0T 3TNdoW

4 i1 SHOILOHMNd aHY S3MILICH3ns oL mmuzumwmum NI SISIT_LNIUNSHE 40 HLONIT 39UH3AY GNY WNLHTXEW
SNOILONAL “JLELS “HLIMY 0L SIINIHIHIY 40 J3FHNM d3NI334 SNUILINMA IN3M3LHLS “HLINY dJ0 J33WNN
SIWUN A3N1J30 ATTIUNNILINT 0L S3ININI433 40 H33NN a3M1 430 S3LEH TTHNE3LX3 40 330NN
JIINIYIATN SN NOTLINOS 40 J3340N S3TMIHIS3E HOTLTIHNG 40 d33LINH
q3INIIA3Y SN INILN0EANS 40 d33WN0H ST IHTLN04ENS 40 438LNH
G3I0N3E3439 5A20718 MOLLIOT d3WUM 40 333NN ANACK 0L SAHIINDEY 40 J3BLINN
SLNIMILELS HMMLIY 40 333H0N 2] SIHIOd AdLNT d0 ¥38HNN

SHOTLUJINNLIOD IBN3EX3

= 3PN 3INacu HYd90¥d NItk = 3dAL 3INAOW
4 NM I A AJHNNS SITLSILYLS 3NA0K WHED0dd d32AT0HY 338N0S B3-330-28 6571111

[ s Bicw R iow]
—

3-26

ORIGINAL PAGE 18
OF POOR QUALITY



¢ 394d

OO~ NOE0

(z 30 z) (d¥s) wexboig xozAieuy apoD
90JIN0S OT3L3IS NVIIYOd @Yz woad nding ordwes “TI-¢ 9anbTg

1NNOD 3ASnN QNY S30LUY3L0 QU3LSTIUH ,
a1 i ALIXITIAHOD LdINDSENS 396Y3AE dNY WAWIXUN

ALIXTITAN0D 1d41¥358NS
9'g 9 JWGN 31aUINUA B NI SAILIUYUHD 40 NITWNN 3DUNIAY gNY WNKTXHL
81 1 SABYNY 404 SNOISM3WIG 40 3NN I9YNIAY AHY WOWT XHLW
P4 TIJHATEAINOS SITGUI YA 40 3IFUNH
Q3ONIAIIIY STTIGUINUA XHI0T3 NOWWOD 40 A39uNN i SA30713 NOWWOJ HI d3WEN 37184 18YA 40 333NN
3003 NI (33N3¥343Y 537a918YA 40 §A38unNN 8z FINA0K NI E3HUN S3TadI8uA JO ¥3aLAN TYL0L
NMOEHY338 INIWILULS NOILBIIJ1J3dS
2'a 8 AHIWILELS ¥3d SHOLHEICD 40 H3BINH TIYHIAHE QHY WNLTXE
<1 2 INZWILULS d33d 537801384 40 39NN 39Y83AY qHY LN IXEW
L SINAUILYLS LHIWMITSSY 40 d38HNN TvloL
NMOIAG348 LNIWILYLS INIWNIISSY
8 g a 4007/51N3N3LYLS 40 433NN JTI-213A8 GHY WNLIEXHL
8'p ) ONILE3N 007 04 40 Hid3d 39Ud3sd dHu WNKTXEL

SLHIALYLS 04 40 ¥33L0N
SLNIILELS J5NUd 40 §38L0H
SLHIWILELS HEnL3d d0 §33H0H
SLONSLEHOT =333 J0 W33LINN
S.d41 40 5123090 sy S.0403 40 A3IFU0NH
SLNIWIALHLS 010D daNITS5Y 40 43800N
SdA4ASNUEL adbmdi TWMOILI UMD 40 #4330
SIN3W3LULS 0109 UNOILIGNOINN 40 H38MNH SINFHIALELS ALOD A0 A3FH0H THL0L
SINIWILHLS 41 JILIWHLISEY 40 ¥38l0H SIMNIWALYLS 41 TWII307T 49 333U0N
SINIWILELS 41 40 d334NH TWI0L 11 SIHIHPHEE JO d33uWNH BL0L

HMDQAHE3E9 JNIWILELS T0NINOD

SINMILYLS dOLS 40 &FNN

SIN3WILYLS 1. Nanidy 40 &N

SLONALSHO] =aH3 40 ¢ 3UNNN

57384977 139441 40 H38WNN

SINSWILYULS 0L 02 d3lndkdnld 40 439W4nH
SHIAASNLNL GIUMNAIOE TUNOTLIANOIHN 40 &33W0N

O SRS

& N I 4 AIBING SAILSILYULS 3Ndod WHdD08d J3ZATENY 334005 68-130-£68 &G"v_"«x

7

pen

»

3

QF POOR QUALITY

3-27




SECTION 4 - SEL DATA THAT CANNOT BE EXTRACTED
‘ T AUTOMATICALLY

Not all of the efforts expended during software development

can be accounted for via automated data collection. This is
primarily due to the fact that these efforts cannot be gquan-

tified or measured in any precise way. For example, during
- the implementation of even some of the simplest algorithms,
false starts frequently can be made before a waorkable solu-
"""" tion is found (i.e., much of what is done is by trial and

‘ error). Also, portions of a design may lend themselves to
easy solution, while others, because of constraints imposed
by the project or mission, may be very difficult to define.
The effort expended on these kinds of activities is not read-

f ily available for measure.

This section lists and discusses some of the items of data

currently collected via the SEL software engineering forms

which cannot be collected automatically. Table 4-1 summar-
( izes these types of data. The data generally fall into the
following categories:

° Subjective data
o o Manual processes

® Valid other activities

4.1 SUBJECTIVE DATA

® Much of the data collected from the SEL forms is subjective

in nature. For example, what constitutes a "good" run de-

pends on each individual's interpretation of what "good"

means. Another example is the use of the word "simple" to

describe software complexity. Those who understand a sec-

tion of software will tend to call the section "simple,"
whereas those who do not understand it may well call it

complex.

4-1  ORIGINAL PAGE |f
OF POOR QUALITY




Table 4-1.

SEL. Form

Data From the SEL Forms That Cannot
Be Automatically Extracted (1 of 3)

Data Item

Resource Summary

Run Analysis

Change Report

Component Status
Report

Manpower hours¥*
Other charges

Percent of management
Run purpose

Reason for change

Effect

Effort

Type of change

Code reading

Activities used for program validation

Activities successful in detecting error
symptoms ‘

Activities tried to find cause
Activities successful in finding cause
Time required to isolate the cause

When did error enter the system

Formal review

Design walk-through
Critical design reviews
Code reading

valid other activities ($$xxxxxx indi-
cates form entry name):

Acceptance testing
Filling out the SEL forms
Meetings

Training

Travel (to and from GSFC)

*Manpower hours might be obtained in the form of tapes such as
those used in the Manpower Allocation and Reporting System
(MARS) (Reference 14) or the Financial Reporting (FINREP) Pro-
gram (Reference 15). ’

4-2 ORIGINAL PAGE 15
OF POOR QUALITY



Table 4-1. Data From the SEL Forms That Cannot
Be Automatically Extracted (2 of 3)

SEL Form ; Data Item

Component Status Valid other activities (Cont'd):
Report (Cont'd) '

JCL development time
Overlay development time

M} System description development time
0 User's guide development time

°Y Discussion with analysis personnel
- ($SANALYT)

Block time ($SBLKTIM)

Discussion with other development
personnel ($$SCONSUL)

Data generation ($S$DATGEN)

Data set formats and maintanence
($SDATSET)

Demonstrations (SSDEMO)

Preparation of task implementation
plan ($$SIMPLAN)

i Discussion with task personnel
($$INTERF)

Keypunching ($$KEYPCH)
Review.GESS, IBM, or other manual

($$SMANUAL)
Write formal memoranda ($$SMEMO)
- Monthly Progress Report preparation
i ($SMNTHLY)
Design notebook preparation
($SNOTEBK)

Informal memos/instruction prepar-
ation ($$PAPERW)

Planning (not milestones) ($$PLANS)

Preparation for presentation
($SPRESNT)

Work on questions ($$SQUESTS)
Review o0ld software ($SROSW)

43  ORIGINAL PAGE IS
) OF POOR QUALITY



ks =3
[

N e
st

e

Table 4-1.

SEL Form

Data From the SEL Forms That Cannot
Be Automatically Extracted (3 of 3)

Data Item

Component Status
Report (Cont'd)

Project Summary
Report

Valid other activities (Cont'd):

Review requirements/specifications
for design ($$RREQS)

Review standards/methodology
($$RSTDS)

Prepare schedules (milestones)
($$SCHEDL)

Attend seminar ($SSEMINR)
Simulation support ($$SIM)

Status meeting with management
(S$STATUS)

Generate system tape ($$SYSTAP)
Perform system testing ($$SYSTST)
Write test plan ($S$TESTPL)

Work on tool (not part of system)
($$TOOL)

Weekly Progress Report ($SWEEKLY)
Xeroxing (reproduction) ($$XEROX)

Complexity (hard, easy, moderate)

ORIGINAL PAGE !-
4-4 OF POOR QUALii ,



These types of subjective conflicts point out the need for
better metrics by which to quantify and qualify the data
being collected. Given a measure of complexity expressed

in terms of simple structured properties (such as the number
or interaétions between product and organizational elements),
normalized measures for programming effort, systems relia-
bility, productivity, and security can be devised, and mean-
ingful comparisons between different products or methodologies
can be made. Without such measures, may of the essential
parts of the developing discipline remain unconnected and
easily misunderstood. Success in developing metrics will
provide a much needed measure of consistency in the results
obtained (see Reference 16).

4.2 MANUAL PROCESSES

Another important consideration is that certain aspects of
current software development are inherently manual or non-
automated processes. The following are examples of such
manual processes: design reviews, code reading, and meetings.
Activities such as these are categorically outside of the

realm of automation.

4.3 VALID OTHER ACTIVITIES

Items which are generally categorized as "valid other activ-
ities" (for the Component Status Report) also are not amena-
ble to automation. These include activities such as travel,
review of 0ld software, review of design requirements, etc.
(see the data items for the Component Status Report in Table
4-1). However, these activities have a direct bearing and
impact on the costs and the success or failure of software

development projects, and they cannot be ignored.

ORIGINAL PAGE I
OF POOR QUALITY



SECTION 5 - FUNCTIONAL REQUIREMENTS

This section gives some top-level functional requirements

for an online automated data collection system. Both oper-

ational considerations and the SEL hardware environment are

factors in these requirements.

5.1 OPERATIONAL CONSIDERATIONS

If the data collection system is to accurately'measure the
o true activity of the software development process, the act
of collecting data must not significantly interfere with
development activities. Also, the performance of the oper-
ating system as a whole must not be degraded by the data
collector. With this in mind, the major design goals of

the data collector are the following:

° Transparency--The user should not be aware that he

is being monitored or that data are being collected.

° Efficiency--Both time and space utilized must be

optimized.

The efficient use of time and space and the event monitoring
- by the automated data collection system is discussed in the
following subsections.

5.1.1 TIME AND SPACE UTILIZATION

In general, there will be many events that will be monitored;

therefore, the time spent logging each event must be minimal.
Only the essential data should be collected, and it should
be possible to selectively monitor development projects.

Also, the data collection manager or system programmer must

be able to easily turn the collector on and off.

The space taken up by the data collector will have to be
minimized. It would not be feasible to develop a monitor
that would be so large that it wouldn't fit into core along

with the application it is to measure.

5-1 IGINAL PAGE 1S
g‘; POOR QUALITY




|

Taking these factors into account, the SEL data collector
must be designed to take the significant information about

an event (e.g., its type, the time, data unique to the event)
and store it for subsequent analysis. Since some events. will
have more data associated with them than do others, the rec-
ords of the intermediate storage file should be variable in

length in order to conserve storage space.
5.1.2 EVENT MONITORING

The data collector must be capable of monitoring three classes
of events: resource use, logical interrupts, and flow of con-
trol. The specific items monitored will vary, depending on
the software development phase (e.g., requirements, design,
coding which is active for a given project.

The resources utilized by a user are perhaps the most easily
collectible items, since they are generally available in
some form through system accounting and resource utilization
procedures. Items such as CPU time, core usage, page frame
allocation and faulting, disk usage, I/O interrupts, etc.,

need only be extracted and stored.

However, routines that normally service an event must be
capable of calculating many of the other items of interest
directly or must call existing or newly developed software
engineering tools capable of deri&ing more detailed statistics
from some basic input source. Programs such as the FORTRAN
Static Source Code Analyzer Program (SAP) and the Multi-Level
Expression Design Language - Requirements (MEDL-R) (briefly
discussed in Sections 3.11 and 3.4, respectively) are repre-

sentatives of this class of tools.

5.2 DATA COLLECTION IN THE SEL HARDWARE ENVIRONMENT

The SEL is a complex system environment in which a telecom~
munications network is attached to a computing coﬁplex con-
sisting of a DEC PDP-11/70 and VAX-11/780. The computing

5-2
ORIGINAL PAGE 1S
OF POOR QUALITY



environment is under control of the VAX/VMS and RSX-11M oper-

ating systems. User-written application programs execute
upon demand from local and remote interactive terminals.

Batch processing can also be performed concurrently.

Automated data collection in this environment requires both

a definition of purpose and a methodology which can be used
to accomplish that purpose. Considerations include the
overall SEL hardware environment, system performance, com-
puting workload, and transmission speed. Because of core
limitations on the PDP-11/70, space requirements in memory
and on disk are key constraints on the approach taken to

.| automated data collection.

- The computers in the SEL environment, although developed by
5 the same manufacturer, have very distinct operating charac-
teristics and systems. Consequently, it may be necessary
to take entirely different approaches to data collection on
the two machines. This would be less desirable, however,
than a centralized data collection facility which would be
shareable between the computers through a network such as
DECnet (Reference 17). A network of this type would permit
synchronization of the system clocks and enable concurrent
data collection on the two machines with a single executive
controller. This feature is important because it would
minimize the amount of preprocessing of intermediate records
prior to their entry into the SEL data base.

5.3 SUMMARY

In developing a software engineering data collection system,
certain general requirements.regarding the data collection

environment become evident. These are summarized below.

1. The act of collecting data must be transparent to

project being monitored.

5-3  QRIGINAL PAGE I8
OF POOR QUALITY




s

The act of establishing and activating data collec-
tion interfaces must be capable of being dynamic
(as well as static) and of beinglperformed on any
ongoing process without logically interrupting that
process.

The data collection system must support the defini-
tion of event discriptors whose content defines the
conditions under which a recording of data is to be
made for later analysis. Such a descriptor might

contain the following:

a. Time
b. Project
c. Data and values

d. Level of collection

The data collection function must not be subjéct to
being disabled for that period of time for which

data collection is required for a given project.

The data collection system must support the acts of
event detection and recording of the captured data.
In a data-rich environment, the sharing of a physi-
éal resource must be transparent to an application

program (process).

The level of system support for the data collector
must be standardized across application systems and
across hardware/software systems (e.g., VAX, PDP,
IBM S/360).

The data collection terminology must be standardized

throughout the data collection environment.

The ability to logically save the most recently
recorded data prior to any purging of the data by
another process or subprocess in the system is nec-

essary.

ORIGINAL PAGE is

5-4 OF POOR QUALITY



10.

11.

12.

13-

14.

15.

Data identification must be provided to distinguish
data between projects. The identification of a col-
lected item must be monitored as part of the data

collection function.

.There must be compatibility with the current SEL

data base. The automated data collection should
be considered to be an adjunct to the established
data base mechanism. The format of data collected
must be designed so that existing data base formats

continue to be satisfactory.

The data collector must be able to monitor both batch

and interactive processes.

Because of the high volume of data collected in an
automated environment, procedures for maintaining
the collected data prior to integration into the
SEL data base must be established.

The ability to edit/purge selected portions of the
collected data must be provided.

Time tagging of data across projects is desirable

if the chronology of the collected data is of inter-
est. If data are time tagged, it will then be pos-
sible to develop a ‘decay function so that the most
recent data is not lost. This is essential if inter-

mediate storage for collected data is in short supply.

Shared access by multiple processes of the intermed-
iate collection file(s) is essential, since it is
likely that several users for a given project will
be active concurrently. It may be necessary to
synchronize the accessibility to project files
(enqueue/dequeue) .

ORIGINAL PAGE IS
573 OF POOR QUALITY



SECTION 6 - CONCLUSIONS AND RECOMMENDATIONS

Currently, the process of large-scale program development
and maintenance in the SEL is informal. Its costs are high
and its output is variable. However, it is essential to
study the process as it is evolving and to make organized,
quantized records of observations which familiarize the per-
ception of what is occurring. With such global statistics
(over the entire life cycle), it is hoped that specific
points or sources of trouble can be identified. Perhaps
areas of the development process which can be better under-
stood can also be identified. Only then can an attempt be
made to change the process without the risk of achieving
only local optimization.

In order to automatically collect statistics on software
development, it is essential that a higher degree of auto-~-
mated software development tools be developed which support
the entire software life cycle. Further, it is necessary
that formal software development procedures be established
and applied routinely to development efforts. The program-
mer workbench (discussed in Section 3.5) is a major step in
this area. Once formalized, the procedures become easier

to automate, and, therefore, data collection for all develop=-
ment phases can be realized.

It is recommended that work be started to define and develop
tools which support the entire development life cycle. Spec-
ial attention should be given to the design phase, which is
by far the most difficult to represent in a computer and is
therefore the most difficult to automate. It is further
recommended that SEL-enriched accounting software be devel-
oped and coupled with revised software engineering forms

which address the desired subjective data.

gE \®
6-1 oR\G\NA‘- ?U &H%Y

oF POO



It is not currently possible to automatically collect statis-
tics on all areas of software development, but much of the
overhead and cost related to data collection can be reduced.
By integrating data collection with a system which supports
the entire development process, more data of a higher quality
can be collected. It is hoped that this will provide a

clearer insight on how to develop quality software.

c-2  ORIGINAL PAGE IS
OF POOR QUALITY



APPENDIX A - SAMPLE SEL SOFTWARE ENGINEERING FORMS

This appendix provides examples of the software engineering
forms currently in use in the SEL. They are given in the
following order:

1. General Project Summary form
2. Component Summary form
. Resource Summary form

Component Status Report form

Computer Program Run Analysis form

.

A U W

Change Report form

ORIGINAL PAGE is
a-1 OF POOR QUALITY



GENERAL PROJECT SUMMARY
PROJECT NAME DATE
A. PROJECT DESCRIPTION
Description
Form of fnput
Requirements
Products Developed
Products Delivered
B. RESOURCES
Target Computer Systems Development Computer Systems
Constraints: Execution Time Size
Other :
Any Problems in Meeting Constraints?
Useful items from Similar Projects:
. Specification Design Coda
Project % Major Minor None % Major Minor None % Major Minor None
G TIME
Start Date End Date _________ Estimated Lifetime Mission Date
Confidence Level
D. Cost B
Cost $ Maximum Available $ Confidence Level
How Cost Determined i
Personnel:  Inception 1/3Way 2/3Way oo Completion
Total Person Months
Other Costs: Computer Time {hrs) Documentation $
Other { ) Other { | I
E. SIZE
Size of System Words. Data Words Instructions
Maximum Space Available Words. Confidence Level
Total Number of Source Statements: FORTRAN ALC
Other { )
Structure of System {Check One):
— Single Overlay
—— Overlay Structure (Number of Overlays Avg. Size )
< Independent Programs {Number of Programs Avg, Size )
Define Your Concept of 2 Module
Number of Modules Range in Module Size: Min. Max. Avg
Number of Different 1/0O Formats <

580-1 (2/77)

Figure A-l. General Project Summary Form (1 of 5)

A-2 ORIGINAL PAGE is

OF POOR QUALITY




F. COMPUTER ACCESS {Check All That Apply. Who Has Access to What.)

Librarian Programmer

Keying in New Source Code
Keying in Update of Source Code
Inclusion of Code into System
Submitting Compilations

Module Testing

Integration Testing

Utility Runs (Tape Backup, Etc.)

Give Percentages for Types of Access:

Librarian Programmer

% Batch
% Interactive

G. TECHNIQUES EMPLOYED (Check All That Apply and Give Level at Which Used.)

Specification: Used Level Used Level
Functional Procedurai
R English Formal
Design:
Top Down Bottom Up
Iterative Enhance. Hardest First
. Other: : ) None Used
Development:
Top Down Bottom Up i ‘
Iterative Enhance. ‘ Hardest First | ]
Other: None Used i {
Coding:
Simutating Construct Structured Code
e Other: i None
Validation/Verification: Testing
Top Down {Stubs) Bottom Up (Drivers)
Other: Specification Driven
Structure Driven T - None
Validation/Verification: Inspection
Code Reading . Walk Through
Proof: None

H. FORMALISMS USED

Used Level Phases

POL

HIPO

Flovscharts

Baseline Diag. (Tree Ch.)

HOS

Functions

Other:

Other:

$80-1 (2/77) Continuation

Figure A-1. General Project Summary Form (2 of 5)

A-3 QRIGINAL PAGE IS
OF POOR QUALITY




1, AUTOMATED TOOLS USED

Name Phases in Which Used Level

7 J. ORGANIZATION

How are the Per: f Organized:

F Project Personnel:

Title Job Description Number Names and Affiliations {If Known)

K. STANDARDS

Type Optional Required
Title of Document

Type Optional Required
Title of Document

Type Optional Required
Title of D¢ at

- Type Optional Required
Title of Document

&

Type Optional Required
Title of Document
Type Optional . Required
Title of Document
Type Optional Required
Title of Document
Type Optional Required

Title of D

$80-1 (2/77) Continuation
Figure A-1l. General Project Summary Form (3 of 5)

A=4 ORIGINAL PAGE IS
OF POOR QUALITY




L. MILESTONES

Phase Estimated Date Contidence Level .
How Determined
Reviewers
Reporting Procedure N
Resource Expenditures: Cost ... PersonMonths ... Computer Time hrs. :
Size of System Confidence Level
Phase . Estimated Date Canfid: Level
How Determined
Reviewers
Reporting Proceduie
Resource Expenditures: Cost . Person Months Computer Tims hrs.
Size of System Confidence Level
Phase Estimated Date Confid Level
How Determined .
Reviewers
Reporting Procedure _
Resource Expenditures: Cost_______  Person Months Computer Time firs.
Size of System Confidence Level
Phase Estimated Date Confid Level
How Determined
Revi ]
Reporting Pracedure
Resource Expenditures: Cost ____.___-_ Person Months Computer Time hrs.
Size of System Confid Level
Phase Estimated Date _Confidence Level
How Determined
Reviewers
Reporting Procedure
Resource Expenditures: Cost . Person Months Computer Time hrs.
Size of System Confid Level
Phase Estimated Date Confidence Level
How Determined
Reviewers
Reporting Procedure
Rescurce Expenditures: Cost Person Months Computer Time hrs.
" Size of System Confidence Level
Phase Estimated Date Confidence Level
How Determined
Reviewers
Reporting Procedure -
Resource Expenditures: Cost . Person Months Computer Time hrs.
Size of System Confidence Level
Phase Estimated Date Canfid Level
How Determined
Reviewers
Reporting Procedure
Resource Expenditures: Cost _________ Person Months Computer Time hrs.

Size of System Confidence Level

$80-1 (2/77) Continuation

Figure A-l.

General Project Summary Form (4 of 5)

A=5  ORIGINAL PAGE 1S
OF POOR QUALITY




1
5}

M. DOCUMENTATION

Type Purpose
Estimated Date Esti d Size Tools Used
Type Purpose
Estimated Date Estimated Size Tools Used
Type Purpose
Estimated Date . Estimated Size Tools Used
Type Purpose
Esti d Date Estimated Size ; Tools Used
Type Purposs
Estimated Date Estimated Size Tools Used
Type Purpose
Estimated Date _._. ______ Estimated Size Tools Used
Type . Purpose
Estimated Date Estimated Size Tools Used

N. PROBLEMS
Stata the three most difficult problems you expect 0 encounter in completing the projezt. (1= most difficuit}

1.

0. QUALITY ASSURANCE

State the three most important aspects of the design, development and testing of the system to which you attribute your
confidence in the completed system. {1™= most important)

1.

PERSON FILLING OUT FORM

580-1 {2/77) Continuation

Figure A-1. General Project Summary Form (5 of 5)

A-6 I8
IGINAL PAGE
gﬁ POOR QUALITY



]

COMPONENT SUMMARY

PROJECT.

DATE

NAME OF COMPONENT.
BRIEF DESCRIPTION

CREATION DATE

STATUS OF COMPONENT NEW e UNDERDEVEL e COMPLETED

TYPE OF SOFTWARE (Check All That Apply)
e /O Processing

Algorithmic

e Logic Controt

CODE SPECIFICATIONS (Check All That Apply)

Systems Related
e DATA/COMMON Black
e Othier

Component

LEVEL OF DETAIL
FORM OF DESIGN Basic Block
Compaonent Subcomponent Segment Stmt Other
Functional
Procedural
English
Formal
Other { )
Precision of Code Specification Very Precise Precise Imprecise
. INTERFACES
Number Components Called Names
Not Fully Specified o
Numiber Calling This Component Names
Not Fully Specified —
Number Shared ltems Names
Not Fully Specified ..
Number of Components Directly Descended from This Component Names
Not Fulily Specified
. PROGRAMMING LANGUAGES
Languages Used and Percentages { ) { )
CONSTRAINT PROBLEM EXPECTED: N
Constraint ~ Component Meets
Present Constraint
Memory Space
Execution Time
Other { )
Size: Source Statements {inciuding Comments) [, Machine Bytes
Source Statements (Not Including Comments)
_Useful Items From Similar Projects
Specification Design Code

Project -
% |Major | Minor

None | % {Major | Minor | None | % {Major | Minor

None

580-5 (6/78)

Figure A-2. Component Summary Form (1 of 2)

-7 5 1S
L PAG
ORIGINA QUAMTY

OF POOR




D. COMPLEXITY

Complexity of Function Easy Moderate

Hard

% Asgsignment Statements % Control Statements

% Other Statements (e.g., Data Deci, 1/0)

E. RESOURCES TO IMPLEMENT

Runs Computer Time {min) Effort (hrs) Est. Completion Date
Design
Code
- Test
F. 1s this component independent of the existing components? Yes No
If No, describe relation of this component to the existing systern:
inserted as a lower level elaboration of higher level components (names)
added as a driver or interface for existing components {names)
a redesign (to add new capability) of existing components {names).
o a renaming of existing component {name)
regrouping of existing material from several components {names)

other

Type of Addition:

error correction

planned enhancement

——— implementation of requirements change

| improvement of clarity, maintainability, or documentation

other {explain below)

e improvement of user service

utility for development purposes only
optimization of time/space/accuracy
adaptation to environment change

G. ADDITIONAL COMMENTS

H, PERSON RESPONSIBLE FOR IMPLEMENTING COMPONENT

I. PERSON FILLING OUT FORM

580-5.(6/78)

- Figure A-2. Component Summary Form (2 of 2)
| A-8

} ORIGINAL PAGE 18

i

OF POOR QUALITY




RESOURCE SUMMARY

PROJECT . DATE___

NAME

WEEK OF:

MANPOWER (HOURS)

% OF
MGMT]

COMPUTER USAGE
(NO. RUNS/HOURS CHARGED)

OTHER CHARGES TO PROJECT

580-3 (6/78)

Figure A-3. Resource Summary Form

A-9
ORIGINAL PACE IS
OF POOR QUALITY



COMPONENT STATUS REPORT

Figure A-4.

A-

10

Component Status Report Form

ORIGINAL PAGE €

OF POOR QUALITY

PROJECT DATE
PROGRAMMER
DESIGN CODE DEVELOPMENT TEST QOTHER
COMPONENT
create | meap | oot | cooe | reao [FONAL | unir | iNTEG | meview |acTiviTy| HRs
Travel
Forms
Meetings
” Acc Test
Training
JoL
. Overfay
* User Guide
System Desc
' |
3
[
580-4 (6/78)




COMPUTER PROGFAM RUN ANALYSIS

DATE . £ L . .

COMPUTER

PROJECT.

PROGRAMMER

COMMENT
{e.a., Run Lost,
No Results)

RUN RESULTS

uone|dwo) o} uey

- | ‘Bsiy paresauagy sasn

10443 andax3y

Program
Error

20403 yuii
10143 3idwio)
2. 10113 318M1305
)
g i 10413 a18MpIeH
10413 .dmag Yo
-2
is Jouz Jor
loug ;g;uqns
Ve
83 uny poon
o

san103lgQ 1391 10N PIQ Uy

SaAI9(QO Ja unl

uny Isii4

COMPONENTS
OF
INTEREST

Bylo
uny 6nqaq
§ Jui/Alquiassy/apdwo)
o
g Aupin/asueuaiuiey
a.
2 3831 jdewyouag
g 1591 WaIsAg
isag uun
JAILOVHILNI
as
E]
e

A-11

ORIGINAL PAGE 18
OF POOR QUALITY

580-7 (6/78)

Computer Program Run Analysis Form

Figure A-5.



NUMBER

CHANGE REPORT FORM

PROJECT NAME CURRENT DATE

SECTION A - IDENTIFICATION
REASON: Why was the change made? .

DESCRIPTION: What change was made?

EFFECT: What components {or docurnents) are changed? {include version)

EFFORT: What additional components {(or documents) were examined in determining what change was needed? o

{(Month Day  Year)

Need for change determined on. ...

Change started on  ..........n.

What was the effort in person time required to understand and implement the change?

———Tlhourorless, __Thourtotday, ____1dayto3days,  ....more than 3 days

SECTION B - TYPE OF CHANGE (How is this change best characterized?)

O Error correction 0 Insertion/delevin of debug code
[ Planned enhancement O Optimization of time/space/accuracy
3 Implerentation of requirements change {1 Adaptation to environment change
O Improvement of clarity, maintainability, or documentation O Other {Explain in E)

. O Improvement of user services

Was more than one component affected by the change? Yes No

FOR ERROR CORRECTIONS ONLY
SECTION, C - TYPE OF ERROR (How is this error best characterized?)

3 Requirements incorrect or misinterpreted (] Misunderstand%ng of external environment, except language
[] Functional specifications incorrect or misinterpreted [ Error in use of programming language/compiler

¥ Design error, involving several components {3 Clerical error

- Error in the design or implementation of a single component [ Other (Explain in E)

FOR DESIGN OR IMPLEMENTATION ERRORS ONLY
1f the error was in design or implementation:

The error was a mistaken assumption about the value or structure of data

The error was a mistake in control logic or computation of an expression

580-2 {6/78)

Figure A-6. Change Report Form (1 of 2)

A=12  oRIGINAL PAGE 1S
OF POOR QUALITY




FOR ERROR CORRECTIONS ONLY
SECTION D - VALIDATION AND REPAIR

What activities were used to validate the program, detect the error, and find its cause?

Activities Activities Activities Activities -
Used for Successful Tried to Successful
Program in Detecting Find in Finding
Validation Error Symptoms Cause Cause
Pre-acceptance test runs
Acceptance testing
-Post acceptance use
inspection of cutput 7

Code reading by programmer

Code reading by other person

Talks with other programmers

Special debug code

System error messages

Project specific error messages

Reading documentation

Trace -

Dump

Cross-reference/attribute list

Proof technique

Other {Explain in E)

What was the time used to isnlate the s3uga?

—OnE hour or loss, ...—one four to one day, ____more than one day, never found
it never found, was a workaround used?. Yes No (Explain in E)
Was this error related to a previous change?
wnre—maYes {Change Report #/Date ...} ____No Can’t tell
When did the error enter the syst.em7
w——rfequirements _._...functional specs design .___coding and test ___—other ____cant tell

SECTION E - ADDITIONAL INFORMATION

Please give any information that may be helpful in categorizing the error or change, and understanding its cause and its
ramifications. '

Name: Authorized: Data:

380-2 (6/78)

Figure A-6. Change Report Form (2 of 2)

A-13 ORIGINAL PAGE |8
OF POOR QUALITY




10.

11.

12.

REFERENCES

Basili, V. R., IEEE Computer Society, "Data Collection,
Validation and BAnalysis,"” Fall 1980

Computer Sciences Corporation, CSC/TM-81/6104, The
Software Engineering Laboratory (Preliminary), D. N.
Card, September 1981 '

Teichrow, D. and E. A. Hershey, Classics in Software
Engineering, E. N. Yourdon (editor). New York:
Yourdon Press, 1979, pp. 389-407

Computer Sciences Corporation, CSC/TM-80/6093, Multi-
Level Expression Design Language - Requirements
(MEDL-R) System Evaluation, W. Decker, May 1980

University of Michigan (ISDOS Project, Department of
Industrial and Operations Engineering), ESD-TR-78-127,
Vol. I, User's Requirements Language (URL) User's
Manual: Part I - Description, H6180/Multics/Version 3.2,
D. Teichrow, E. A. Hershy, and S. Spevak, March 1977

--, ESD-TR-78-129, Vol. II, User's Requirements Lan-
guage (URL) User's Manual: Part 11 - References, 1BM/
370/MVS/TSO/Version 3.2, D. Teichrow, E. A. Hershy,
and S. Spevak, March 1977

--, ESD-TR-78-~130, Vol. I, User's Requirements Language
(URL) User's Manual: Part I - Description, H1680/
Multics/Version 3.3, D. Teichrow, E. A. Hershy, and

S. Speval, July 1977

Computer Sciences Corporation, CSC/TM-81/6091, Software
Engineering Laboratory (SEL) Programmer Workbench
Phase I Evaluation, W. Decker, March 1981

Dolotta, T. A. and J. R. Mashay, Proceedings of the
2nd International Conference on Software Engineering,
"An Introduction to the Programmer's Workbench,"
October 1976

Computer Sciences Corporation, (notes on a program
under development), "Online Data Collection (0ODC)
Tool," C. E. Goorevich, 1980

Freeman, P., IEEE Computer Society, "Tutorial on Soft-
ware Design Techniques: The Nature of Design," October
1976, pp. 35-63

Computer Sciences Corporation, CSC/TM-79/6263, Evalu-
ation of the Caine, Faber, and Gordon Program Design
Language (PDL) in the Goddard Space Flight Center
(GSFC) Code 580 Software Development Environment,

W. Decker, September 1979

R-1  ORIGINAL PAGE IS
OF POOR QUALITY



13.

14.

15.

16.

17.

REFERENCES (Cont'd)

Computer Sciences Corporation, CSC/TM-~79/6012, FORTRAN
Static Source Code Analyzer Design and Module Descrip-
tions, E. M. O'Neill, January 1978

--, CSC/TM-77/6295, Manpower Allocation and Reporting
System (MARS) Design Document, S. Waligora, October
1977

--, CSC/SD-78/6033, Financial Report Generation Pro-
gram (FINREP) System Description and User's Guide,
C. Rabbin, March 1978

Belady, L. A. and M. M. Lehman, "A Model for Large
Program Development," IBM Systems Journal, 1976,
vol. 15, no. 3, pp. 225-227

Digital Equipment Corporation, AA-D901A-TE, DECnet-
VAX User's Guide, August 1978

ORIGINAL PAGE s
OF POOR QUALITY



- S

BIBLIOGRAPHY OF SEL LITERATURE

Anderson, L., "SEL Library Software User's Guide," Computer
Sciences-Technicolor Associates, Technical Memorandum, June
1980 ’

Bailey, J. W., and V. R. Basili, "A Meta-Model for Software
Development for Resource Expenditures," Proceedings of the
Fifth International Conference on Software Endgineering.

New York: Computer Societies Press, 1981

Banks, F. K., "Configuration Analysis Tool (CAT) Design,"
- Computer Sciences Corporation, Technical Memorandum, March
1980

Basili, V. R., "The Software Engineering Laboratory: Objec-
tives," Proceedings of the Fifteenth Annual Conference on
Computer Personnel Research, August 1977

Basili, V. R., "Models and Metrics for Software Management
and Engineering," ASME Advances in Computer Technologv,
January 1980, vol. 1

Basili, V. R., "SEL Relationships for Programming Measure-
ment and Estimation," University of Maryland, Technical
Memorandum, October 1980

“j Basili, V. R., Tutorial on Models and Metrics for Software
Management and Engineering. New York: Computer Societies
'w Press, 1980 (also designated SEL-80-008)

Basili, V. R., and J. Beane, "Can the Parr Curve Help with
- the Manpower Distribution and Resource Estimation Prob-
i lems?", Journal of Systems and Software, February 1981,
vol. 2, no. 1 '

| Basili, V. R., and K. Freburger, "Programming Measurement
‘i and Estimation in the Software Engineering Laboratory,”
Journal of Systems and Software, February 1981, vol. 2, no. 1

Basili, V. R., and T. Phillips, "Evaluating and Comparing
Software Metrics in the Software Engineering Laboratory," .
Proceedings of the ACM SIGMETRICS Symposium/Workshop: OQual-
ity Metrics, March 1981

Basili, V. R., and T. Phillips, "Validating Metrics on Proj-
ect Data,"” University of Maryland, Technical Memorandum,
December 1981

o ORIGINAL PAGE |s
B-1 OF POOR QUALITY



Basili, V. R., and R. Reiter, "Evaluating Automatable Meas-
ures for Software Development," Proceedings of the Workshop
on Quantitative Software Models for Reliability, Complexity
and Cost, October 1979

Basili, V. R., and M. V. Zelkowitz, "Designing a Software
Measurement Experiment," Proceedings of the Software Life
Cycle Management Workshop, September 1977

Basili, V. R., and M. V. Zelkowitz, "Operation of the Soft-
ware Engineering Laboratory," Proceedings of the Second
Software Life Cycle Management Workshop, August 1978

Basili, V. R., and M. V. Zelkowitz, "Measuring Software De~-
velopment Characteristics in the Local Environment," Com-
puters and Structures, August 1978, vol. 10

Basili, V. R., and M. V. Zelkowitz, "Analyzing Medium Scale
Software Development,” Proceedings of the Third Interna-
tional Conference on Software Engineering. New York: Com-
puter Societies Press, 1978

Chen, E., and M. V. Zelkowitz, "Use of Cluster Analysis To
Evaluate Software Engineering Methodologies," Proceedings of
the Fifth International Conference on Software Engineering.
New York: Computer Societies Press, 1981

Church, V. E., "User's Guides for SFL PDP-11/70 Programs,"
Computer Sciences Corporation; Technical Memorandum, March
1980

Freburger, K., "A Model of the Software Life Cycle" (paper
prepared for the University of Maryland, December 1978)

Higher Order Software, Inc., TR-9, A Demonstration of AXES
for NAVPAK, M., Hamilton and S. Zeldin, September 1977 (also
designated SFL-77-005)

Hislop, G., "Some Tests of Halstead Measures" (paper pre-
pared for the University of Maryland, December 1978)

Lange, S. F., "A Child's Garden of Complexity Measures"
(paper prepared for the University of Maryland, December
1978y

Miller, A. M., "A Survey of Several Reliability Models"
(paper prepared for the University of Maryland, December
1978)

B-2  QORIGINAL PAGE IS
OF POOR QUALITY



National Aeronautics and Space Administration (NASA), NASA
Software Research Technology Workshop (proceedings), March
1980

Page, G., "Software Engineering Course Evaluation," Computer
Sciences Corporation, Technical Memorandum, December 1977

Parr, F., and D. Weiss, "Concepts Used in the Change Report
Form," NASA, Goddard Space Flight Center, Technical Memoran-
dum, May 1978

Perrxicone, B, T., "Relationships Between Computer Software
and Associated Errors: Empirical Investigation" (paper pre-
pared for the University of Maryland, December 1981)

Reiter, R. W., "The Nature, Organization, Measurement, and
Management of Software Complexity" (paper prepared for the
University of Maryland, December 1976)

Scheffer, P. A., and C. E. Velez, "GSFC NAVPAK Design Higher
Order Lanauages Study: Addendum," Martin Marietta Corpora-
tion, Technical Memorandum, September 1977

Software Engineering Laboratory, SEL-76-001, Proceedings
From the First Summer Software Engineering Workshop,
August 1976

--, SEL-77-001, The Software Engineering Laboratory,
V. R. Basili, M. V. Zelkowitz, F. E. McGarry, et al., May
1977

--, SEL-77-002, Proceedings From the Second Summer Software
Engineering Workshop, September 1977

~=, SEL-77-003, Structured FORTRAN Preprocessor (SFORT),
B. Chu, D, S. Wilson, and R. Beard, September 1977

--, SEL-77-004, GSFC NAVPAK Design Specifications Languages
Study, P. A. Scheffer and C. E. Velez, October 1977

--, SEL-78-001, FORTRAN Static Source Code Analyzer (SAP)
Design and Module Descriptions, E. M, O'Neill,
S. R. Waligora, and C. E. Goorevich, January 1978

--, SEL-78-002, FORTRAN Static Source Code Analyzer (SAP)
User's Guide, E. M, O'Neill, S. R. Waligora, and
C. E. Goorevich, February 1978

-=-, SPFL~78-003, Evaluation of Draper NAVPAK Software Desian,
K. Tasaki and F. E. McGarry, June 1978

B-3 ORIGINAL PAGE 1g

OF POOR QUALITY



~=-, SEL~78-004, Structured FORTRAN Preprocessor (SFORT)
PDP-11/70 User's Guide, D. S. Wilson, B. Chu, and G. Page,
September 1978

-~-, SEL~78-005, Proceedings From the Third Summer Software
Engineering Workshop, September 1978

--, SEL-78-006, GSFC Software Engineering Research Require-
ments Analysis Study, P. A. Scheffer, November 1978

~--, SEL-78-007, Applicability of the Rayleigh Curve to the
SEL Env1ronment T. E. Mapp, December 1978

--, SEL-79-001, SIMPL-D Data Base Reference Manual,
M. V. Zelkowitz, July 1979

--, SEL-79-002, The Software Engineering Laboratory: Rela-
tionship Equations, K. Freburger and V. R. Basili, May 1979

--, SEL-79-003, Common Software Module Repository (CSMR)
System Description and User's Guide, C. E. Goorevich,
S. R. Waligora, and A. L. Green, August 1979

-~-, SEL-79~004, Evaluation of the Caine, Farber, and Gordon
Program Design Language (PDL) in the Goddard Space Flight
Center (GSFC) Code 580 Software Design Environment,

C. E. Gobrev1ch A. L. Green, and F. E. McGarry, September
1979

-=-, SEL-79-005, Proceedings From the Fourth Summer Software
Engineering Workshop, November 1979

--, SEL-80-001, Configuration Analysis Tool (CAT) Functional
Requirements/Specifications, F. K. Banks, C. E. Goorevich,
and A. L. Green, February 1980

-~-, SEL-80-002, Multi-Level Expression Design Language-
Requirement Level (MEDL-R) Svstem Evaluation, W. J. Decker,
C. E. Goorevich, and A. L. Green, May 1980

--, SEL-80-003, Multimission Modular Spacecraft Ground Sup-
port System (MMS/GSS) State-of-the-Art Computer System/
Compatibility Study, T. Welden, M. McClellan, P. Liebertz,
et al., May 1980

--, SFL-80-004, System Description and User's Guide for Code
580 Configuration Analysis Tool (CAT), F. K. Banks,
W. J. Decker, J. G. Garrahan, et al., October 1980

--, SEL-80-005, A,Study of the Musa Reliability Model,
A. M. Miller, November 1980 :




|

-=-, SEL-80~-006, Proceedings From the Fifth Annual Software
Engineering Workshop, November 1980

--, SEL-80-007, An Appraisal of Selected Cost/Resource Esgti-
mation Models for Software Systems, J. F. Cook and
F. E. McGarry, December 1980

--, SFL-81-001, Guide to Data Collection, V. E. Church,
D. N. Card, F. E. McGarry, et al., September 1981

--, SEL-81-002, Software Engineering Laboratory (SEL) Data
Base Organlzatlon and User's Guide, D. C. Wyckoff, G. Page,
F. E. McGarry, et al., September 1981

-=-, SEL-81-003, Software Engineering Laboratory (SEL) Data
Base Maintenance System (DBAM) User's Guide and System De-
scription, D. N. Card, D. C. Wyckoff, G. Page, et al.,
September 1981

--, SEL-81-004, The Software Engineering Laboratory,
D. N. Card, F. E. McGarry, G. Page, et al., September 1981

--, SEL-81-005, Standard Approach to Software Development,
V. E. Church, F, E. McGarry, G. Page, et al., September 1981

--, SEL-81-006, Software Engineering Laboratory (SEL) Docu-
ment Library (DOCLIB) System Description and User's Guide,
W. Taylor and W. J. Decker, December 1981

--, SEL-81-007, Software Engineering Laboratory (SEL) Com-
pendium of Tools, W. J. Decker, E., J. Smith, A. L. Green,
et al., February 1981

-~, SEL-81-008, Cost and Reliability Estimation Models
(CAREM) User's Guide, J. F. Cook and E. Edwards, February
1981

-~, SEL-81-009, Software Engineering Laboratory Programmer
Workbench Phase 1 Evaluation, W. J. Decker, A. L. Green, and
F. E. McGarry, March 1981

' ~~, SEL-81-010, Performance and Evaluation of an Independent

Software Verification and Integratlon Process, G. Page and
F. E. McGarry, May 1981

-=-, SEL-81-011, Evaluating Software Development by Analysis
of Change‘Data, D. M, Weiss, November 1981

~--, SEL-81-012, Software Engineering Laboratory, G. O.
Picasso, December 1981

ORIGINAL PAGE I5
OF POOR QUALITY



|

--, SEL-81-013, Proceedings From the Sixth Annual Software
Engineering Workshop, December 1981

--, SEL-81-014, Automated Collection of Software Engineering
Data in the Software Engineering Laboratory (SEL),
A. L. Green, W. J. Decker, and F. E. McGarry, September 1981

Turner, C., G. Caron, and G. Brement, "NASA/SEL Data Compen-
dium," Data and Analysis Center for Software, Special Publi-
cation, April 1981

Turner, C., and G. Caron, "A Comparison of RADC and NASA/SEL
Software Development Data," Data and Analysis Center for
Software, Special Publication, May 1981

Weiss, D. M., "Error and Change Analysis," Naval Research
Laboratory, Technical Memorandum, December 1977

Williamson, I. M., "Resource Model Testing and Information,"
Naval Research Laboratory, Technical Memorandum, July 1979

Zelkowitz, M. V., "Resource Estimation for Medium Scale
Software Projects,”™ Proceedings of the Twelfth Conference on
the Interface of Statistics and Computer Science. New York:
Computer Societies Press, 1979

Zelkowitz, M. V., and V. R. Basili, "Operational Aspects of
a Software Measurement Facility," Proceedings of the
Software Life Cycle Management Workshop, September 1977

- ORIGINAL PAGE IS
B=6  OF POOR QUALITY



